Polyspace® Bug Finder™ Release Notes

MATLAB&SIMULINK?

=) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Release Notes
© COPYRIGHT 2013-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2018b
Analysis Setup 1-2
Configuration from Build System: Automatically generate
Polyspace configuration modules from build system 1-2
C11 and C++14 Support: Run Polyspace analysis on code with
CllorC++14features 1-3
Autodetection of Concurrency Primitives: Multitasking model
detected from C11 multithreading functions 1-3

Compiler Support: Set up Polyspace analysis easily for code

compiled with Renesas compilers 1-4
Changes in analysis options and binaries 1-4
Changes in MATLAB option object properties and option

Vallues . .ot e 1-6

AnalysisResults 1-8

CERT C++ Support: Identify CERT C++ violations by using
defect checkers and codingrules 1-8
Improved CERT C Support: Check for precision loss, blocking
operations, and other rules from the CERT C Coding

Standard 1-9
Constant Overflows: Check for overflows on integer
constants 1-11
Updated Bug Finder defect checkers 1-11
Changes to coding rules checking 1-12
Reviewing Results 1-14

Function Call Hierarchy: View call tree of functions in source

COOE . vt 1-14
Header Files Access: Open your project header files directly

from the point of inclusion 1-15

iii

R2018a

Analysis Setup 2-2
AUTOSAR Support: Set up Polyspace multitasking configuration
automatically from an AUTOSAR description 2-2
MATLAB Coder Support: Run Polyspace on C/C++ code
generated from MATLAB code without additional setup . . . 2-2

Compiler Support: Set up Polyspace analysis easily for code

compiled with Texas Instruments, IAR or CodeWarrior

COMPIleTrS 2-3
Updated GCC and Clang Compiler Support: Set up Polyspace

analysis easily for code compiled with GCC versions 5.x or

6.x, or Clang version 3.x compilers 2-4
Configuration from Build System: Include or exclude sources

when generating Polyspace project using

polyspace-configure, 2-5
Support for IBM Rational Rhapsody to be removed 2-6
Changes in analysis options and binaries 2-6
Changes in MATLAB option object properties 2-11

AnalysisResults 2-14

CERT C Support: Check for information leakage, invalid
environment pointers, and other rules from the CERT C

Coding Standard i, 2-14
Cryptography Checkers: Check for security vulnerabilities such
as incorrect use of public key cryptography routines 2-15

MISRA C++ Support: Check for overriding of standard library
functions, missing const qualifiers, and other MISRA C+

+rules ... 2-17
MISRA C:2012 Directive 4.8: Detect opportunities for data

hiding 2-18
Rule for Source Line Length: Constrain number of characters

perlineinyourcode 2-19
Improved Fast Analysis: Find some multi-file MISRA C violations

infastanalysis 2-19

Reviewing Results 2-20

Concurrency Modeling: View all tasks and interrupts extracted
from code and Polyspace configuration in one view 2-20

iv Contents

Data Races: Distinguish write-write conflicts from more benign

read-write conflicts 2-22
R2017b
Analysis Setup 3-2
Green Hills Compiler Support: Set up Polyspace analysis easily
for code compiled with Green Hills MULTI Compiler 3-2
OSEK Multitasking Support: Detect the multitasking
configuration for your OSEK application automatically 3-2
Incremental Analysis in Eclipse: Detect bugs as you type and
save code in your Eclipse IDE 3-3
Polyspace API in MATLAB: Configure analysis, run analysis, and
read analysis results with a single MATLAB object 3-4
Compiler-Specific Keywords: Nonstandard compiler-specific
keywords are only supported when you specify compiler ... 3-6

POSIX and BSD Standards: Use functions from these standards

without additional setup 3-7
Changes in analysis options and binaries 3-7
AnalysisResults 3-12
Security Standards Support: Detect violations of all secure
coding guidelines from ISO/IEC Technical Specification
17961:2013 and more guidelines from SEI CERT C Coding
Standard 3-12
MISRA C:2012 Directive 1.1: Detect instances of
implementation-specific behavior in your code 3-14
Changes to coding rule checking 3-14
Reviewing Results 3-16
Result Review Workflow: Hide results that you reviewed once
and justified through source code annotations 3-16
Code Annotations: Justify results or define your own format with
a new annotation format 3-17
MISRA Comments and Code Annotations: Import your existing
MISRA C:2004 justifications to MISRA C:2012 results . . . 3-18

Results Review Workflow: Sort and filter results by subtype . 3-19

vi

Contents

Constraint Specification: Navigate easily to the constraint

specification interface for Bug Finder results 3-20
Result Status: Assign statuses that directly correspond to stages
of development workflow 3-21
R2017a
Analysis Setup 4-2

Unified User Interface: Create and maintain a single Polyspace
project for Bug Finder and Code Prover analysis 4-2
Easier Compliance with Security Standards: Choose CWE, CERT
C99, or ISO/IEC TS 17961 coding standard and address
corresponding violations through Polyspace results and
SECUTity reportst e e 4-6
Incremental Analysis of Specific Checks: Analyze only files
edited since previous analysis to quickly find new defects and

coding rule violations 4-7
TASKING Compiler Support: Set up Polyspace analysis easily for
code compiled with Altium TASKING compiler 4-8

Updated Visual C++ Support: Set up Polyspace analysis easily
for code compiled with Microsoft Visual C++ 2015
compiler 4-9
Autodetection of Concurrency Primitives: Multitasking model
detected from Windows, pC/OS II or C++11 multithreading

functions 4-10
Autodetection of Concurrency Primitives: Map Unsupported

Thread Creation Functions to Supported Functions 4-10
Manual Multitasking Setup: Specify routines that disable and

reenable all interrupts 4-12

Specifying Function Names for Options: Choose from
prepopulated list in user interface instead of entering

manually e 4-14
Polyspace API in MATLAB: Create MATLAB objects from

Polyspace projects to run analysis 4-15
Support for 128-bit variables 4-16
Improvement in automatic project creation from build

SYSLEIMS . . ot e 4-16
Changes in analysis options and binaries 4-16
Changes in MATLAB option object properties 4-21

Change in temporary folder location 4-22

AnalysisResults 4-23

Additional Defect Checkers for Security: Check for security
vulnerabilities such as incorrect use of cryptographic

routines 4-23
MISRA Amendment Support: Check your code for new security

guidelines in MISRA C:2012 Amendment 1 4-25
New Code Metrics: See number of lines in header files and

number of local variables per function 4-26
Changes to coding rule checking 4-27

Reviewing Results 4-29

Folder Names in Results: Filter or organize analysis results by

source foldernames 4-29
Code to Model Traceability: Switch easily between identifiers in

generated code and corresponding blocks in model 4-29
Polyspace API in MATLAB: Read Polyspace analysis results from

MATLAB .. 4-31

Double Lock and Other Concurrency Defects: Get help
investigating the defects using detailed control flow

information 4-32
Spreadsheet of Checkers: Use spreadsheet to keep track of
checkers thatyouenable 4-33
R2016b
Analysis Setup 5-2
Diab Compiler Support: Set up Polyspace analysis easily for
code compiled with Wind River Diab compiler 5-2
Multitasking Code Analysis Setup: Specify cyclic tasks and
nonpreemptable interrupts directly as analysis options 5-2
Improved source and include folder management 5-2
Writable Examples: Modify example projects and restore
original versionsi ittt 5-3
Run analysis on .psprj file from the command line 5-3
Support forlocalthreads 5-4

viii

Contents

Polyspace API in MATLAB: Configure and run Polyspace using

MATLAB objectso i 5-4
Configuration Parameters Help: View descriptions of Polyspace

options in Simulink configuration parameters 5-6
Eclipse Build Support: Set up Polyspace analysis from Eclipse

build command 5-6
Visual Studio 2010 add-in support to be removed from

installation 5-6
Support for Rhapsody 8.1 5-6
DOS Mode Warning on Linux: Compilation warning for DOS

INCONSISLENCIES . . . v vt 5-6

Faster Restart for Remote Verification: Reuse compilation
results from a previous analysis 5-7

Changes in Target & Compiler analysis options 5-8

Changes in analysis options and binaries 5-9

AnalysisResults 5-12

CERT C Support: Identify CERT C violations using defect

checkers and codingrules 5-12
Local Variable Size Estimation: Find total size of local variables

inafunction 5-14
Metrics for C++ Templates: View code complexity metrics for

instances of C++ templates 5-15
Changes to coding rule checking 5-15
Updated Bug Finder defect checkers 5-17

Reviewing Results 5-19

Data Race Graphs: Fix data race defects easily using graphical

view of function call sequence 5-19
Interactive Graphical Display: Click graphs on Dashboard to

filterresults 5-20
Event History for Coding Rules: Navigate easily between two

locations in code that together cause a rule violation 5-21
Results in Macros Consolidated: View coding rule violations and

defects on macro definitions instead of macro instances .. 5-21
Analysis Objectives in Eclipse: Create review scopes to focus

VOUTTEVIEW . oottt et ettt e e ettt it e e e e e 5-21
Filtered Report: Reuse result filters for generated report . . . 5-22
Results Export: Export results to text file for computing graphs

and statistics 5-22
Coding Rules in Report: View improved presentation of coding

rules violationsinreport, 5-22

English Reports in Non-English Locales: Generate English

reports on operating systems with a different language . . 5-23
Change in report template location 5-24
Improved PDF Report Generation 5-24
Changes in Polyspace User Interface 5-24

R2016a
Analysis Setup 6-2
Files to Review: Generate results for only specified files and

folders 6-2
Faster MISRA Checking: Check coding rules more quickly and

efficiently 6-2
S-Function Analysis: Launch analysis of S-Function code from

Simulink 6-3
Import signal ranges from model for generated code

analysis 6-3
Polyspace Metrics Tomcat Upgrade: Use upgraded default

Tomcat server or custom Tomcat version 6-3
Polyspace Metrics Interface Updated: View project and metrics

summary and defectimpact 6-4
Source Code Search: Search huge applications more

quickly 6-4
Default Layouts: Switch easily between project setup and

results review in userinterface 6-5
Files Not Compiled: Receive alerts about compilation errors in

dashboard andreports 6-5
Project Language Flexibility: Change your project language at

ANy time 6-5
Improvements in automatic project creation from build

command 6-6
Polyspace TargetLink plug-in supports data from

structures e 6-7
Changes in analysisoptions 6-7

AnalysisResults 6-10
Improvements to defect checkers 6-10

ix

X

Contents

Improvements in checking of previously supported MISRA C

TULES © ottt 6-10
Standards Mapped to Defects: Observe coding standards using
Polyspace Bug Finder 6-12
Reviewing Results 6-13
More results available inrealtime 6-13
Autocompletion for Review Comments: Partially type previous
comment to select complete comment 6-13
Persistent Filter States: Apply filters once and view filtered
results across multipleruns 6-13
Polyspace Eclipse plug-in results location moved 6-14
R2015aSP1
Bug Fixes
R2015b
Analysis Setup 8-2

Mixed C/C++ Code: Run analysis on entire project with C and C
++sourcefiles 8-2
Autodetection of Multitasking Primitives: Analyze source code
with multitasking primitives from POSIX and VxWorks

without manualsetup 8-2
Microsoft Visual C++ 2013: Analyze code developed in

Microsoft Visual C++ 2013 8-3
GNU 4.9 and Clang 3.5 Support: Analyze code compiled with

GNU4.90rClang 3.5 ... oo it 8-3
Improvements to automatic project creation from build

command 8-4
Start Page: Get oriented with Polyspace Bug Finder 8-5
Saved Layouts: Save your preferred layouts of the Polyspace

userinterface 8-6

Renaming of labels in Polyspace user interface 8-6

Including options multiple times 8-7
Updated Support for TargetLink 8-7
Changes in analysisoptions 8-7
Binariesremoved i 8-11
Support for Visual Studio 2008 to be removed 8-12
Import Visual Studio projectremoved 8-12
AnalysisResults 8-13

More Defect Categories: Detect security vulnerabilities,
resource management issues, object oriented design

ISSUBS & vttt e 8-13
Complete MISRA C:2012 Support: Detect violations of all
MISRA C:2012rulescovi i 8-13
Improvements in checking of previously supported MISRA C
TUlES . .o 8-14
Changes to Bug Finder Defects 8-17
Reviewing Results 8-26
Results in Real Time: View results as they are produced 8-26
Improved Eclipse Support: View results embedded in source
code and context-sensitive help 8-26
Defects Classified by Impact: Prioritize defect review by using
the impact attribute assigned to each defect type 8-27
Improved Review Capability: View result details and add review
comments inonewindow 8-28
Enhanced Review Scope: Filter coding rule violations from
displayinoneclick 8-28
Configuration Associated with Result Not Opened
byDefault 8-29
Improvements in Report Templates 8-29
XML and RTF report formats removed 8-30
R2015a
Analysis Setup 9-2

xi

xii

Contents

Simplified workflow for project setup and results review with a

unified user interface

Search improvements in the user interface
Option to specify program termination functions

Support for GCC4.8

Polyspace plug-in for Simulink improvements

Polyspace binaries beingremoved 9-5
Import Visual Studio project being removed 9-5
AnalysisResults 9-6
Changes to Bug Finderdefects 9-6
Improvements in coding rules checking 9-7
Reviewing Results 9-10
Code complexity metrics available in user interface 9-10
Context-sensitive help for code complexity metrics, MISRA-C:
2012, and custom codingrules 9-10
Review of latest results compared to the lastrun 9-10
Simplified results infrastructure 9-11
Default statuses to justifyresults 9-11
Filters to limit display of results 9-11
R2014b
Analysis Setup 10-2
Parallel compilation for faster analysis 10-2
SupportforMac OS 10-2
Support for C++11 10-2
Code editor in Polyspace interface 10-3
Ignore files and folders during analysis 10-3
Simulink plug-in support for custom project files 10-3
TargetLink supportupdated 10-3
AUTOSAR supportadded 10-4
Remote launcher and queue manager renamed 10-4
Improved global menu in user interface 10-4
Improved Project Manager perspective 10-5
Polyspace binaries beingremoved 10-6

Import Visual Studio project being removed 10-6

AnalysisResults 10-7
Support for MISRA C:2012t 10-7
Additional concurrency issue detection (deadlocks, double locks,

andothers) 10-7
New and updated defect checkers 10-9

Reviewing Results 10-11
Context-sensitive help for analysis options and defects 10-11
Improved Results Manager perspective 10-11
Error mode removed from coding rules checking 10-12

R2014a

Analysis Setup 11-2
Automatic project setup from build systems 11-2
Support for GNU 4.7 and Microsoft Visual Studio C++ 2012

dialects 11-2
Simplification of coding rules checking 11-3
Preferencesfilemoved 11-4
Security level support for batch analysis 11-4
Interactive mode for remote analysis 11-5
Default texteditor 11-5
Support for Windows 8 and Windows Server 2012 11-5
Function replacement in Simulink plug-in 11-6
Check model configuration automatically before analysis . . . 11-6
Data range specification support 11-7
Polyspace binaries beingremoved 11-7

AnalysisResults 11-8
Classification of bugs according to the Common Weakness

Enumeration (CWE) standard 11-8
Additional coding rules support (MISRA-C:2004 Rule 18.2,

MISRA-C++ Rule 5-0-11) 11-8
Additional analysis checkers 11-8

xiii

Improvement of floating point precision 11-9

Reviewing Results 11-10
Results folder appearance in Project Browser 11-10
Results manager improvements 11-11
Additional back-to-model support for Simulink plug-in 11-13

R2013b

Analysis Setup 12-2
Introduction of Polyspace Bug Finder 12-2
Fast analysis of large code bases 12-2
Eclipseintegration 12-2

AnalysisResults 12-3
Detection of run-time errors, data flow problems, and other

defectsinCand C++4+code 12-3
Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF

++, and custom naming conventions 12-3
Cyclomatic complexity and other code metrics 12-4

Reviewing Results 12-5
Traceability of code analysis results to Simulink models 12-5
Access to Polyspace Code Proverresults 12-5

xiv Contents

R2018b

Version: 2.6
New Features
Bug Fixes

Compatibility Considerations

R2018b

Analysis Setup

1-2

Configuration from Build System: Automatically generate
Polyspace configuration modules from build system

Summary: In R2018b, you can create a separate Polyspace analysis module for each
binary in your build system.

Suppose a build system has the following dependencies and creates four binaries: the
executables foo.exe and bar.exe, and the dynamic libraries util.dll and gui.dl1l.

Previously, you created a single Polyspace options file from this build system. You can now
create a separate Polyspace options file for each binary created in your build system.

See also:

* “Modularize Polyspace Analysis by Using Build Command”
* polyspace-configure

Benefits:

* More precise analysis: You can perform a separate Polyspace analysis for each binary
in your build system. The analysis does not mix files from distinct binaries.

Analysis Setup

* Automated modularization: You can reuse the modularization in your build system to
create the Polyspace analysis modules.

* Focused analysis: You can analyze only specific modules instead of your entire
codebase.

* Minimal knowledge of build system required: You do not need to know the details of
your build system. With a -module flag, a separate options file is created for each
binary in your build system. You can analyze only the code implementation of the
binaries that you are interested in.

C11 and C++14 Support: Run Polyspace analysis on code with
C11 or C++14 features

Summary: In R2018b, Polyspace can interpret the majority of C11 or C++14-specific
features.

Target Language Target Language
Source code language C w Source code language CPP e

C standard version

s C++ standard version epp14 ~

See also “C/C++ Language Standard Used in Polyspace Analysis”.
Benefits: You can now setup a Polyspace analysis for code containing C11 or C++14-

specific features. Previously, some features were not recognized and caused compilation
erTors.

Autodetection of Concurrency Primitives: Multitasking model
detected from C11 multithreading functions

Summary: In R2018b, if you use C11 functions for multitasking, the Polyspace analysis
can interpret them semantically.

Polyspace interprets the following functions:

* thrd _create: Thread is created.

1-3

R2018b

1-4

* mtx_lock: Critical section begins.
* mtx_unlock: Critical section ends.

See also “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

Benefits: You do not have to adapt your code or specify your multitasking model
manually through analysis options. The analysis determines your multitasking model from
the functions in your code and finds data races or other concurrency defects.

Compiler Support: Set up Polyspace analysis easily for code
compiled with Renesas compilers

Summary: If you build your source code with the Renesas® compiler, in R2018b, you can

specify the compiler name for your Polyspace analysis. The analysis can interpret macros

that are implicitly defined by the compiler and compiler-specific language extensions such
as keywords and pragmas.

You can specify these target processors directly: r178, rh850, or rx. See Renesas
Compiler (-compiler renesas).

Target Environment

Compiler renesas D

Target processor type |rl78 £

Benefits: You can now set up a Polyspace project without knowing the internal workings
of the Renesas compilers. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove unknown
language extensions from your preprocessed code.

Changes in analysis options and binaries

Polyspace Bug Finder has new Target & Compiler options
Behavior change

Polyspace Bug Finder has new Target & Compiler configuration options C standard
version (-c-version) and C++ standard version (-cpp-version).

Analysis Setup

Use these options to specify the C and C++ language standards you follow in your source
code.

-compiler option has new value renesas
Behavior change

Compiler (-compiler) option has new value renesas. When you specify this option
value, the analysis can interpret macros that are implicitly defined by the Renesas
compiler and compiler-specific language extensions such as keywords and pragmas.

Target & Compiler options Respect C90 standard (-no-language-extensions) and
C++11 extensions (-cppll-extension) are removed
Warns

Options Respect C90 standard (-no-language-extensions) and C++11 extensions
(-cppll-extension) are removed. Use options C standard version (-c-version)
and C++ standard version (-cpp-version) instead.

In the Polyspace user interface, if an option is replaced by another option, the
replacement occurs automatically in your configuration. To update your scripts, see this
table.

Option Use Instead

Respect C90 standard (-no-language- |Setthe option C standard version (-
extensions) c-version) to c90.

C++11 extensions (-cppll-extension) |Setthe option C++ standard version
(-cpp-version) to cppll.

You get a warning when you use the removed options at the command line.

polyspace-configure option -lang is removed
Warns

Starting in R2018b, polyspace-configure detects the language of your source code.

Option -lang will be removed in a future release. You get a warning when you use this
option and there is no replacement. To update your code, remove instances of - Lang.

-compiler option value clang3.5 is removed
Errors

Compiler (-compiler) option value clang3.5 is removed. Use clang3.x instead.

1-5

R2018b

1-6

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this
table.

Option Use Instead

-compiler clang3.5 -compiler clang3.x

You get an error when you use the removed option at the command line.

Changes in MATLAB option object properties and option
values

polyspace.Project.Configuration has new TargetCompiler properties
Behavior change

polyspace.Project.Configuration has new TargetCompiler properties
CVersion and CppVersion. Use these properties in your MATLAB® code to specify the
C and C++ language standards you follow in your source code.

For more information, see Properties.

TargetCompiler property has a new Compiler option value renesas
Behavior change

TargetCompiler property has a new Compiler option value renesas. When you
specify this option value, the analysis can interpret macros that are implicitly defined by
the Renesas compiler and compiler-specific language extensions such as keywords and
pragmas.

For more information, see Properties.

TargetCompiler properties NoLanguageExtensions and Cppl1lExtension will be
removed
Still runs

Properties NoLanguageExtensions and CppllExtension will be removed. Use
CVersion and CppVersion instead.

To update your MATLAB code, see this table.

opts = polyspace.Project;

Analysis Setup

Property

Use Instead

.NoLanguageExtensions = true;

opts.Configuration.TargetCompiler...

opts.Configuration.TargetCompiler...
.CVersion = 'c90"';

.CppllExtension = true;

opts.Configuration.TargetCompiler. ..

opts.Configuration.TargetCompiler...
.CppVersion = 'cppll’;

Unlike NoLanguageExtensions and Cppl1lExtension which let you specify one
version of the C and C++ language standards, the new object properties CVersion and
CppVersion let you specify different versions of these standards.

For more information, see Properties.

polyspaceConfigure option -lang is removed

Warns

Starting in R2018b, polyspaceConfigure detects the language of your source code.

Option -lang will be removed in a future release. You get a warning when you use this
option and there is no replacement. To update your code, remove instances of - lang.

1-7

R2018b

Analysis Results

CERT C++ Support: Identify CERT C++ violations by using
defect checkers and coding rules

Summary: In R2018b, you can look for violations of these CERT C++ rules and CERT C
rules that apply to C++. For a list of all Polyspace results that correspond to CERT C++
violations, see “CERT C++ Coding Standard and Polyspace Results”.

CERT C++ Rule Description Polyspace Checker
CONb54-CPP Wrap functions that can Function that can
spuriously wake up in a loop |[spuriously wake up
not wrapped in loop
EXP57-CPP Do not cast or delete Conversion or
pointers to incomplete deletion of
classes incomplete class
pointer
OOP58-CPP Copy operations must not Copy operation
mutate the source object modifying source
operand
CON37-C Do not call signal() in a Signal call in
multithreaded program multithreaded program
CON40-C Do not refer to an atomic Atomic load and store
variable twice in an sequence not atomic
expression
Atomic variable
accessed twice in an
expression
CON41-C Wrap functions that can fail |Function that can
spuriously in a loop spuriously fail not
wrapped in loop
EXP46-C Do not use a bitwise Possible invalid
operator with a Boolean-like |operation on boolean
operand operand

1-8

https://wiki.sei.cmu.edu/confluence/x/cns-BQ
https://wiki.sei.cmu.edu/confluence/x/83s-BQ
https://wiki.sei.cmu.edu/confluence/x/gXs-BQ
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/QNUxBQ
https://wiki.sei.cmu.edu/confluence/x/WNYxBQ

Analysis Results

CERT C++ Rule Description Polyspace Checker
FI032-C Do not perform operations |[Inappropriate I/0
on devices that are only operation on device
appropriate for files files
FLP36-C Preserve precision when Precision loss in
converting integral values to|integer to float
floating-point type conversion
INT30-C Ensure that unsigned Unsigned integer
integer operations do not constant overflow
wrap
INT32-C Ensure that operations on |Integer constant
signed integers do not result|overflow
in overflow
INT35-C Use correct integer Integer precision
precisions exceeded
Possible invalid
operation on boolean
operand
PRE31-C Avoid side effects in Side effect in
arguments to unsafe macros |arguments to unsafe
macro
STR38-C Do not confuse narrow and [Misuse of narrow or

wide character strings and
functions

wide character string

Improved CERT C Support: Check for precision loss, blocking
operations, and other rules from the CERT C Coding Standard

Summary: In R2018b, you can look for violations of these CERT C rules (in addition to

previously supported rules).

CERT C Rule

Description

Polyspace Checker

CONO05-C

Do not perform operations
that can block while holding
a lock

Blocking operation
while holding lock

1-9

https://wiki.sei.cmu.edu/confluence/x/19YxBQ
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://wiki.sei.cmu.edu/confluence/x/I9YxBQ
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ
https://wiki.sei.cmu.edu/confluence/x/bdUxBQ

R2018b

1-10

CERT C Rule Description Polyspace Checker
CON30-C Clean up thread-specific Thread-specific
storage memory leak
CON36-C Wrap functions that can Function that can
spuriously wake up in a loop |[spuriously wake up
not wrapped in loop
CON37-C Do not call signal() in a Signal call in
multithreaded program multithreaded program
CON40-C Do not refer to an atomic Atomic load and store
variable twice in an sequence not atomic
expression
Atomic variable
accessed twice in an
expression
CON41-C Wrap functions that can fail |Function that can
spuriously in a loop spuriously fail not
wrapped in loop
DCL38-C Use the correct syntax when |Incorrect syntax of
declaring a flexible array flexible array member
member size
F1032-C Do not perform operations |Inappropriate I/0
on devices that are only operation on device
appropriate for files files
FLP36-C Preserve precision when Precision loss from
converting integral values to|integer to float
floating-point type conversion
INT35-C Use correct integer Integer precision
precisions exceeded
Possible invalid
operation on boolean
operand
P0OS44-C Do not use signals to Use of signal killing

terminate threads

thread

https://wiki.sei.cmu.edu/confluence/x/gtYxBQ
https://wiki.sei.cmu.edu/confluence/x/RNUxBQ
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/QNUxBQ
https://wiki.sei.cmu.edu/confluence/x/GtcxBQ
https://wiki.sei.cmu.edu/confluence/x/19YxBQ
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://wiki.sei.cmu.edu/confluence/x/otUxBQ

Analysis Results

CERT C Rule Description Polyspace Checker

POS52-C Do not perform operations |Blocking operation
that can block while holding (while holding lock
a POSIX lock

PRE31-C Avoid side effects in Side effect in
arguments to unsafe macros |[arguments to unsafe

macro

STR37-C Arguments to character- Misuse of sign-
handling functions must be |extended character
representable as an value
unsigned char

STR38-C Do not confuse narrow and [Misuse of narrow or
wide character strings and |wide character string
functions

See also “Mapping Between CERT C Rules and Polyspace Results”.

Constant Overflows: Check for overflows on integer constants

Summary: In R2018b, you can check for instances where a compile-time constant is
assigned to a variable whose data type cannot accommodate the value.

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;
See Integer constant overflowand Unsigned integer constant overflow.

Benefits: Most compilers wrap around overflowing constants with a warning. However, if
you want to check for these instances, you can enable the constant overflow checkers in
Bug Finder.

Updated Bug Finder defect checkers

Summary: In R2018b, these defect checkers have been updated.

1-11

https://wiki.sei.cmu.edu/confluence/x/mdUxBQ
https://wiki.sei.cmu.edu/confluence/x/I9YxBQ
https://www.securecoding.cert.org/confluence/x/fAs
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

R2018b

1-12

Defect

Description

Update

Write without a
further read

A variable is never read
after assignment

The checker now detects
redundant write operations
on global variables.

For instance, you perform
two write operations on a
global variable without an
intermediate read operation.
The first write operation is
redundant.

Misuse of sign-
extended character
value

Data type conversion with
sign extension causes
unexpected behavior.

The checker now detects
use of sign-extended plain
char variables as argument
to a character-handling
function.

For new Bug Finder checkers, see the release notes about CERT C and CERT C++

support.

Changes to coding rules checking

In R2018D, the following changes have been made in checking of previously supported

MISRA C® rules.

Rule

Description

Improvement

MISRA C:2012 Rule 2.2

There shall be no dead code.

The rule checker now flags
redundant write operations
on global variables.

For instance, you perform
two write operations on a
global variable without an
intermediate read operation.
The first write operation is
redundant.

Analysis Results

Rule

Description

Improvement

MISRA C:2012 Rule
10.3

The value of an expression
shall not be assigned to an
object with a narrower
essential type or of a
different essential type
category.

The checker now flags
assignments to a boolean
variable if the assigned
value has a non-boolean
essential type.

MISRA C++:2008 Rule
5-0-15

Array indexing shall be the
only form of pointer
arithmetic.

The checker does not flag
array indexing on pointers
that point to array variables.

1-13

R2018b

Reviewing Results

Function Call Hierarchy: View call tree of functions in source
code
Summary: In R2018b, you can view information about the call tree of functions in your

source code by opening the Call Hierarchy pane. To open this pane click the fx icon in
the Result Details pane.

v
int main{woid)
{
pthread t thread increment;
pthread t thread get;

7 il
1 pthread create (ethread increment, ((wvoid *)0), increment count, ((wvoid *)0)});
v
M pthread create(sthread get, NULL, set count, NULL):

=2 o
Calls File Line Stubbed
e E—
----- b pthread_create() quick_test.c 25 5td library
= ® task_main:thread_increment() quick_test.c 25 5td library
—_ increment_count() quick_test.c 25
----- b pthread_create() quick_test.c 26 5td library
=~ # task_main:thread_get) quick_test.c 26 5td library
—_ set_count() quick_test.c 26
----- p pthread_join() quick_test.c 28
----- p pthread_join() quick_test.c =]

Benefits: For a function foo in your source code, you can see functions and tasks that
call foo (callers), and those called by foo (callees).

1-14

Reviewing Results

Header Files Access: Open your project header files directly
from the point of inclusion

Summary: In R2018b, you can open header files you reference in your code by right-
clicking on the include directive in the Source pane.

| k4 Source : : : : :
'prugramming.q:up x
$include <stdint.h> /% 899 standard types %/
#include <limits.h>
#include <errno.h>
$include <float.h:
#include <signal.h>
$include <ays/types.h>
$include <sys/socket.h>
E $#include <arpasinet.h>
#include <unistd.h>
#include <math.h>

$include "bf example types.h"
#define fatal error() abort()
volatile int some condition = 1;

enum |
SIZE4
SIZES
SIZE&
SIZEZ20
SIZE1024 = 1024

[
[0 ':"'I-E_I'l =y
&7

}:

If Polyspace determines that the header file is available, the #include, #import, or
#include next preprocessor directive is underlined in the source code.

1-15

R2018b

Benefits: When you review results, you can quickly see the contents of a header file
without leaving the Polyspace user interface.

1-16

R2018a

Version: 2.5
New Features
Bug Fixes

Compatibility Considerations

R2018a

Analysis Setup

AUTOSAR Support: Set up Polyspace multitasking
configuration automatically from an AUTOSAR description

Summary: In R2018a, Polyspace can parse your AUTOSAR specifications (.arxml files)
to determine your multitasking configuration.

_

Bug_Finder_Example X

4 B

=1 Target & Compiler lal
i i Macros

Envirenment Settings

i Inputs & Stubbing

Multitasking

External multitasking configuration | autosar v)

i Coding Rules & Code Metrics ARXML files selection | File o A T @O
' ----- Bug Finder Analysis v H:‘proji\arxml_folder
£ > W

2-2

This feature supports AUTOSAR XML schema for releases 4.0 and later.

For more information, see ARXML files selection (-autosar-multitasking).

Benefits:
* Automatic configuration: You do not need to specify your multitasking configuration
manually. Polyspace can determine the tasks, interrupts and critical sections from your
AUTOSAR specifications (specifically, the ECUC-CONTAINER-VALUE element).

* Minimal knowledge required for setup: You do not need to know the details of the

AUTOSAR specifications for configuring a Polyspace analysis. You simply provide the
folder containing your .arxml files.

MATLAB Coder Support: Run Polyspace on C/C++ code
generated from MATLAB code without additional setup

Summary: In R2018a, if you install Embedded Coder® and Polyspace, you can run

Polyspace directly on C/C++ code generated from MATLAB code and check for defects
(Bug Finder) or run time errors (Code Prover).

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html

Analysis Setup

2] MATLAB Coder - averaging_filter.prj — O)

D2 Generate Code GENERATE v VERIFY CODE

Product mode: | Bug Finder w
Results type: | Based on Polyspace configuration w

Output folder: |results_averaging_filter

b Advanced Setti...

‘v Run

For details, see:

* Run Polyspace on C/C++ Code Generated from MATLAB Code
* Configure Advanced Polyspace Options in MATLAB Coder App

Benefits:

* Seamless integration: You do not have to configure the Polyspace analysis manually, in
the Polyspace user interface or otherwise. The Polyspace analysis is seamlessly
integrated with the workflow in the MATLAB Coder™ App.

» Easier scripting: You do not have to know or specify names of files generated from
your MATLAB code. You can simply use a specific folder for code generation output
and provide that folder for code analysis. This way, you can have end-to-end scripting
for the code generation and analysis.

Compiler Support: Set up Polyspace analysis easily for code
compiled with Texas Instruments, IAR or CodeWarrior
compilers

Summary: If you build your source code using these compilers, in R2018a, you can
specify the compiler name for your Polyspace analysis:

2-3

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/verify-cc-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/configure-advanced-options-in-matlab-coder-app.html

R2018a

* Texas Instruments™
You can specify these target processors: c28x, c6000, arm and msp430.

See Texas Instruments Compiler (-compiler ti).
+ IAR

You can specify these target processors: arm, avr, msp430, rh850 and r178.

See IAR Embedded Workbench Compiler (-compiler iar-ew).
* CodeWarrior

You can specify these target processors: s12z or powerpc.

See NXP CodeWarrior Compiler (-compiler codewarrior).

The analysis can interpret macros that are implicitly defined by the compiler and
compiler-specific language extensions such as keywords and pragmas.

Target Environment Target Environment Target Environment

Comtcs : : Compler brew .. lv Conoler codenarrior

Target processor type arm Taroet processor type arm ~ Target processor type powerpe 2 T

Benefits: You can now set up a Polyspace project without knowing the internal workings
of these compilers. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove unknown
language extensions from your preprocessed code.

Updated GCC and Clang Compiler Support: Set up Polyspace
analysis easily for code compiled with GCC versions 5.x or 6.x,
or Clang version 3.x compilers

Summary: In R2018a, if you build your source code using these versions of GCC or Clang
compilers, you can specify the following compiler option values to setup your Polyspace
analysis:

2-4

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/texasinstrumentscompilercompilerti.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/iarembeddedworkbenchcompilercompileriarew.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nxpcodewarriorcompilercompilercodewarrior.html

Analysis Setup

Target Environment

Compiler anus.x P

Target processor type 1386 e

gnu5.x, for GCC release 5.1, 5.2, 5.3, and 5.4.

Target Environment

Compiler anue, x w

Target processor type [i380 e

gnub.x, for GCC release 6.1, 6.2, and 6.3.

Starting GCC version 5, the version number increases by one for each major release, for
instance,.from 5.x to 6.x. Polyspace follows this new naming convention.

* [Target Environment

Compiler dang3.x w

Target processor type [i386 W

clang3.x, for LLVM release 3.5, 3.6, 3.7, 3.8, and 3.9.

The analysis can interpret macros that are implicitly defined by the compiler and
compiler-specific language extensions such as keywords and pragmas.

For more information, see Compiler (-compiler).

Configuration from Build System: Include or exclude sources
when generating Polyspace project using polyspace-configure

Summary: In R2018a, you can include or exclude source files or folders when generating
a Polyspace project from your build system.

To create a Polyspace project that does not contain all files from your build system:

1 Trace your build command. Do not create a project yet. Optionally store the build
trace and cache in specific locations (instead of the default).

2-5

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html

R2018a

2-6

3

polyspace-configure -no-project make -B \
-build-trace trace.txt -cache-path /tmp/cache

Create a Polyspace project using the build trace and cache. Include or exclude files as
needed using shell GLOB patterns.

polyspace-configure -no-build \
-build-trace trace.txt -cache-path /tmp/cache \
-include-sources 'src/' -exclude-sources '* test.c'

The preceding example includes sources in folder paths containing src and
excludes . c files ending with _test.

Delete the build trace and cache.

For more information, see polyspace-configure.

Benefits:

Exclusion of irrelevant files: You can avoid cluttering your Polyspace project with files

that you do not want to analyze, for instance, files used for testing.

Modular analysis: You can create a separate Polyspace project for each module

covered by your build system. Trace your build command once. When creating a
Polyspace project, include only files belonging to a specific module. Repeat the project
creation step for each module.

Support for IBM Rational Rhapsody to be removed

The Polyspace integration with the IBM® Rational Rhapsody environment will be removed
after R2018b.

Compatibility Considerations

To continue using the latest releases of Polyspace, run code analysis in the Polyspace user
interface or using scripts.

Changes in analysis options and binaries

Polyspace Bug Finder has a new Multitasking option
Behavior change

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/polyspace-configure-source-files-selection-syntax.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspaceconfigurecommand.html

Analysis Setup

Polyspace Bug Finder has a new Multitasking configuration option ARXML files
selection (-autosar-multitasking).

Use this option to automatically detect the multitasking configuration from your
AUTOSAR specification.

Polyspace Bug Finder has new -compiler option values
Behavior change

Use the new Compiler (-compiler) option values to interpret macros that are
implicitly defined by the compilers and compiler-specific language extensions such as
keywords and pragmas..

2-7

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html

R2018a

2-8

Option

New Value

Compiler (-compiler)

New value ti
added. See
Compiler Support
release note.

New value iar-ew
added. See
Compiler Support
release note.

Use this value to
emulate IAR
compilers.

For older
Polyspace projects,
you can still use
option value iar.

New value
codewarrior
added. See
Compiler Support
release note.

New value gnu5. x
added. See
Updated GCC and
Clang Compiler
Support release
note.

New value gnu6. x
added. See
Updated GCC and
Clang Compiler
Support release
note.

New value
clang3.x added.
See Updated GCC

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html

Analysis Setup

Option New Value

and Clang
Compiler Support
release note.

-compiler option value clang3.5 is removed
Warns

Compiler (-compiler) option value clang3.5 is removed. Use clang3.x instead.

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this
table.

Option Use Instead
-compiler clang3.5 -compiler clang3.x

You get a warning when you use the removed option value at the command line.

-compiler option values iso, none, gnu, and visual through visuall0 are removed
Errors

Compiler (-compiler) option values iso, none, gnu, visual, visual6, visual7.0,
visual7.1, visual8, and visuall0 are removed.

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this
table.

Option Use Instead

-compiler iso -compiler generic

-compiler none

-compiler gnu -compiler gnu3.4

2-9

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html

R2018a

Option Use Instead

-compiler visual -compiler visuall0.0
-compiler visual6

-compiler visual7.0
-compiler visual7.1l

-compiler visual8

-compiler visuall@

You get a error when you use the removed options at the command line.

Target&Compiler options Set wchar_t to unsigned long (-wchar-t-is-unsigned-
long) and Set size_t to unsigned long (-size-t-is-unsigned-long) are removed
Errors

Option Set wchar t to unsigned long (-wchar-t-is-unsigned-1long) is removed.
Set Management of wchar t (-wchar-t-type-is)tounsigned-long instead.

Option Set size_t to unsigned long (-size-t-is-unsigned-long) is removed. Set
Management of size t (-size-t-type-is)tounsigned-long instead.

In the Polyspace user interface, if an option is replaced by another option, the
replacement occurs automatically in your configuration. To update your scripts, replace
each instance of the removed option with the corresponding new option.

You get an error when you use the removed options at the command line.

-enum-type-definition option value defined-by-standard is removed
Errors

Enum type definition (-enum-type-definition) option value defined-by-standard
is removed. Use defined-by-compiler instead.

In the Polyspace user interface, if an option value is replaced by another option value, the

replacement occurs automatically in your configuration. To update your scripts, see this
table.

2-10

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/managementofwchar_twcharttypeis.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/enumtypedefinitionenumtypedefinition.html

Analysis Setup

Option Use Instead
-enum-type-definition defined-by- |-enum-type-definition defined-by-
standard compiler

You get an error when you use the removed option value at the command line.

Changes in MATLAB option object properties

polyspace.Project.Configuration has new Multitasking properties
Behavior change

polyspace.Project.Configuration has new Multitasking properties
EnableExternalMultitasking, ExternalMultitaskingType, and
ArxmlMultitasking. Use these properties to set up the multitasking configuration of
your project from external files you provide.

For more information, see Properties.

TargetCompiler property has a new Compiler option values
Behavior change

Use the new Compiler option values to interpret macros that are implicitly defined by
the compilers and compiler-specific language extensions such as keywords and pragmas.

opts=polyspace.Project;

2-11

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

R2018a

2-12

Property

Description

opts.Configuration...
.TargetCompiler.Compiler

* New value ti added. See Compiler
Support release note.

* New value iar-ew added. See Compiler
Support release note.

Use this value to emulate IAR compilers.

For older Polyspace projects, you can
still use property value iar.

* New value codewarrior added. See
Compiler Support release note.

* New value gnu5.x added. See Updated
GCC and Clang Compiler Support
release note.

¢ New value gnu6.x added. See Updated
GCC and Clang Compiler Support
release note.

* New value clang3.x added. See
Updated GCC and Clang Compiler
Support release note.

For more information, see Properties.

Multitasking property EnableOsekMultitasking is removed

Errors

Property EnableOsekMultitasking is removed. To update your MATLAB code, see this

table.

opts=polyspace.Project;

Property

Description

opts.Configuration.Multitasking...
.EnableOsekMultitasking

opts.Configuration.Multitasking...
.EnableExternalMultitasking=1;
opts.Configuration.Multitasking...
.ExternalMultitaskingType="'o0sek"';

If you use the removed property, you get an error.

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

Analysis Setup

For more information, see Properties.

TargetCompiler properties WcharTisUnsignedLong and SizeTIsUnsignedLong are

removed
Errors

Properties WcharTIsUnsignedLong and SizeTIsUnsignedLong are removed. To

update your MATLAB code, see this table.

opts=polyspace.Project;

Property Description
opts.Configuration.TargetCompiler... |opts.Configuration.TargetCompiler...
.WcharTIsUnsignedLong .WcharTTypeIs="unsigned-long"

opts.Configuration.TargetCompiler...

.SizeTIsUnsignedLong

opts.Configuration.TargetCompiler...

.S5izeTTypeIs="unsigned-long"

If you use the removed property, you get an error.

For more information, see Properties.

EnumTypeDefinition option value defined-by-dialect is removed

Errors

EnumTypeDefinition option value defined-by-dialect is removed. To update your

MATLAB code, see this table.

opts=polyspace.Project;

Property

Description

opts.Configuration.TargetCompiler...

.EnumTypeDefinition="defined-by-dialeq

opts.Configuration.TargetCompiler...

tEnumTypeDefinition="defined-by-compil

If you use the removed property, you get an error.

For more information, see Properties.

2-13

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

R2018a

Analysis Results

CERT C Support: Check for information leakage, invalid
environment pointers, and other rules from the CERT C Coding

Standard

Summary: In R2018a, you can look for violations of these CERT C rules (in addition to

previously supported rules).

CERT C Rule Description Polyspace Checker
DCL39-C Avoid information leakage |[Information leak via
when passing a structure structure padding
across a trust boundary
ENV31-C Do not rely on an Environment pointer
environment pointer after |invalidated by
following an operation that |previous operation
may invalidate it
ERR32-C Do not rely on Misuse of errno in a
indeterminate values of signal handler
errno
EXP35-C Do not modify objects with |Accessing object with
temporary lifetime temporary lifetime
EXP44-C Do not rely on side effects in [Side effect of
operands to sizeof, Alignof, |expression ignored
or Generic
EXP47-C Do not call va_arg with Incorrect data type
argument of the incorrect |passed to va arg
type
Too many va arg calls
for current argument
list
FI041-C Do not call getc(), putc(), Stream argument with
getwc(), or putwc() witha |possibly unintended
stream argument that has |side effects
side effects

2-14

https://www.securecoding.cert.org/confluence/x/IABlAw
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/informationleakviastructurepadding.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/informationleakviastructurepadding.html
https://www.securecoding.cert.org/confluence/x/OYAt
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://www.securecoding.cert.org/confluence/x/NABl
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misuseoferrnoinasignalhandler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misuseoferrnoinasignalhandler.html
https://www.securecoding.cert.org/confluence/x/pYEt
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/accessingobjectwithtemporarylifetime.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/accessingobjectwithtemporarylifetime.html
https://www.securecoding.cert.org/confluence/x/LQo
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/sideeffectofexpressionignored.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/sideeffectofexpressionignored.html
https://www.securecoding.cert.org/confluence/x/BYAQCw
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectdatatypepassedtova_arg.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectdatatypepassedtova_arg.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://www.securecoding.cert.org/confluence/x/1AA1
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html

Analysis Results

CERT C Rule Description Polyspace Checker

FLP37-C Do not use object Memory comparison of
representations to compare |float-point values
floating-point values

MSC38-C Do not treat a predefined Predefined macro used
identifier as an object ifit |as object
might only be implemented

as a macro
MSC40-C Do not violate constraints Inline constraint not
respected
PRE30-C Do not create a universal Universal character
character name through name from token
concatenation concatenation
PRE32-C Do not use preprocessor Preprocessor
directives in invocations of |directive in macro
function-like macros argument

See also Mapping Between CERT C Rules and Polyspace Results.
Cryptography Checkers: Check for security vulnerabilities
such as incorrect use of public key cryptography routines

Summary: In R2018a, using Bug Finder defects, you can identify incorrect use of public
key cryptography routines from the OpenSSL library.

The software detects the following issues with your use of cryptography routines.

Public key cryptography

Defect Issue Detected

Context initialized incorrectly Context used for cryptography operation is

for cryptographic operation initialized for a different operation. For
instance, you mix up encryption and
decryption.

2-15

https://www.securecoding.cert.org/confluence/x/J4DkC
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/memorycomparisonoffloatpointvalues.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/memorycomparisonoffloatpointvalues.html
https://www.securecoding.cert.org/confluence/x/_ICGAg
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/predefinedmacrousedasanobject.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/predefinedmacrousedasanobject.html
https://www.securecoding.cert.org/confluence/x/h4F8Bw
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/inlineconstraintnotrespected.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/inlineconstraintnotrespected.html
https://www.securecoding.cert.org/confluence/x/Zg4
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/universalcharacternamefromtokenconcatenation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/universalcharacternamefromtokenconcatenation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/universalcharacternamefromtokenconcatenation.html
https://www.securecoding.cert.org/confluence/x/JYC2AQ
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/preprocessordirectiveinmacroargument.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/preprocessordirectiveinmacroargument.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/preprocessordirectiveinmacroargument.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/cert-c-coding-standard-and-polyspace-results.html#bu57vix
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyforcryptographicoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyforcryptographicoperation.html

R2018a

2-16

Defect

Issue Detected

Incorrect key for cryptographic
algorithm

Cryptography operation is not supported by
the algorithm used in context initialization.
For instance, you use the DSA algorithm for
encryption.

Missing data for encryption,
decryption or signing operation

Data provided for cryptography operation is
NULL or data length is zero.

Missing parameters for key
generation

Context used for key generation is
associated with NULL parameters or not
associated with parameters at all.

Missing peer key

Context used for shared secret derivation is
associated with a NULL peer key or not
associated with a peer key at all.

Missing private key

Context used for cryptography operation is
associated with a NULL private key or not
associated with a private key at all.

Missing public key

Context used for cryptography operation is
associated with a NULL public key or not
associated with a public key at all.

Nonsecure parameters for key
generation

Context used for key generation is
associated with weak parameters, for
instance, insufficient parameter length.

RSA algorithm specific

Defect

Issue Detected

Incompatible padding for RSA
algorithm operation

Cryptography operation is not supported by
the padding type set in context.

Missing blinding for RSA
algorithm

Context used in decryption or signature
verification is not blinded against timing
attacks.

Missing padding for RSA algorithm

Context used in encryption or signing
operation is not associated with any
padding.

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectkeyforcryptographicalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectkeyforcryptographicalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingdataforencryptiondecryptionorsigningoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingdataforencryptiondecryptionorsigningoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpeerkey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingprivatekey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpublickey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecureparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecureparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incompatiblepaddingforrsaalgorithmoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incompatiblepaddingforrsaalgorithmoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingblindingforrsaalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingblindingforrsaalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpaddingforrsaalgorithm.html

Analysis Results

Defect

Issue Detected

Nonsecure RSA public exponent

Context used in key generation is
associated with a low exponent value.

Weak padding for RSA algorithm

Context used in encryption or signing
operation is associated with an insecure
padding type.

Hash functions

Defect

Issue Detected

Context initialized incorrectly
for digest operation

Context used for digest operation is
initialized for a different digest operation.
For instance, you mix up signing and
signature verification.

Nonsecure hash algorithm

Context used for message digest creation is
associated with a weak algorithm.

SSL/TLS connections

Defect

Issue Detected

Nonsecure SSL/TLS protocol

Context used for handling SSL/TLS
connections is not associated with a weak

protocol.

MISRA C++ Support: Check for overriding of standard library
functions, missing const qualifiers, and other MISRA C++

rules

Summary: In R2018a, you can look for violations of these MISRA® C++ rules (in addition

to previously supported rules).

Rule Description

0-1-3 A project shall not contain unused
variables.

0-1-5 A project shall not contain unused type
declarations.

2-17

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecurersapublicexponent.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/weakpaddingforrsaalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyfordigestoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyfordigestoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecurehashalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecuressltlsprotocol.html

R2018a

2-18

Rule Description

4-10-1 NULL shall not be used as an integer value.

4-10-2 Literal zero (0) shall not be used as the
null-pointer constant.

7-1-1 A variable which is not modified shall be
const qualified.

7-1-2 A pointer or reference parameter in a
function shall be declared as pointer to
const or reference to const if the
corresponding object is not modified.

9-3-3 If a member function cannot be made static
then it shall be made static, otherwise if it
can be made const then it shall be made
const.

15-5-3 The terminate() function shall not be called
implicitly.

17-0-3 The names of standard library functions

shall not be overridden.

See also MISRA C++ Coding Rules.

MISRA C:2012 Directive 4.8: Detect opportunities for data

hiding

Summary: In R2018a, you can look for violations of MISRA C:2012 Directive 4.8. The
directive states that if a pointer to a structure is never dereferenced in a translation unit,
the implementation of the structure must be hidden in that unit.

See MISRA C:2012 Directive 4.8.

Benefits: Using this checker, you can find opportunities for defining opaque data types

that hide the implementation of a structure.

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/misra-c-coding-rules-1.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012directive4.8.html

Analysis Results

Rule for Source Line Length: Constrain number of characters
per line in your code

Summary: In R2018a, you can define a limit for number of characters per line in your
code and use Polyspace to check for lines that fall outside that limit.

Use custom rule 20.1 and specify the character limit as the rule pattern. See Group 20:
Style.

Improved Fast Analysis: Find some multi-file MISRA C
violations in fast analysis

Summary: In R2018a, if you run fast analysis, the analysis also looks for these MISRA C
violations that involve checking multiple files:

e MISRA C: 2004: Rules 8.8 and 8.9.
« MISRA C: 2012: Rules 8.5 and 8.6.

For more information, see Use fast analysis mode for Bug Finder.

Benefits: You detect more violations in the fast analysis mode. Previously, fast analysis
looked only for defects and coding rule violations that involved single files or functions.

2-19

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/group-10-function-templates.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/group-10-function-templates.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012rule8.5.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012rule8.6.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

R2018a

Reviewing Results
Concurrency Modeling: View all tasks and interrupts extracted
from code and Polyspace configuration in one view

Summary: In R2018a, you can see the tasks and interrupts extracted from your code and
configuration in one view.

After analysis, click the Concurrency modeling link on the Dashboard.

2-20

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/concurrency-modeling.html

Reviewing Results

k' 4 Concurrency modeling et

| O~ Type here to filter table

Entry point

= Interrupts (2)
210
Executes repeatedly after the main entry point completes Manually configured
2120
Executes repeatedly after the main entry point completes Manually configured

Preemptable interrupts ()

Maon-preemptable tasks (4)

= Tasks (12)
o1l
Executes repeatedly after the main entry point completes Manually configured
= et20
Executes repeatedly after the main entry point completes Manually configured
5 dtin
Starts in main at line 113 Automatically detected
= dt3al} (11 instances)
Starts 10 times in main at line 123 Automatically detected
Starts in main at line 122 Automatically detected
Benefits:

* Easy spot-check for concurrency modelling: You can verify if Polyspace correctly
detected your multitasking configuration from your code. For instance, if you know a
priori that a specific function acts as an interrupt, you can spot-check whether
Polyspace considers the function as an interrupt.

* Determination of priorities: The entry points in this view are grouped in the order of
priorities: interrupts, preemptable interrupts, non-preemptable tasks, (preemptable)

2-21

R2018a

tasks. To understand why a data race does not occur between two entry points (Bug
Finder), you can check if one of the entry points has lower priority than the other. See
Data race.

This information is also included in reports you generate from the analysis results.
Data Races: Distinguish write-write conflicts from more
benign read-write conflicts

Summary: In R2018a, you can choose to review only data races that come from conflicts
between two write operations.

The result details message for these data races have an additional line: Variable value

may be altered by write-write concurrent access. Use the Detail column

filters on the Results List pane to show only the data races that have this additional line.

O pata race (Impact: High) &
Certain operations on variable 'bad_glob2’ can interfere with each other and cause unpredictable values.
Variable value may be altered by write-write concurrent accesses.

Access Access Protections Task File Scope Line

Write (Non atomic) Mo protection bug_datarace_task3() |concurrency.c |bug_datarace_task3() 88
o\\.:) Operation might involve multiple machine instructions

Write (Non atomic) Mo protection bug_datarace_task4() |concurrency.c |bug_datarace_task4() (93

Operation might involve multiple machine instructions

Al results v TaNew Flv <@ 5> Showing92/92 v

& Check ¥ Detail @ Information o File &

gn A
D(Cushom...)
O

[JAn if (expression) construct shall be followed by a compound statement.

[[Jcertain calls to function 'setlocale’ can interfere with each other and cause unpredictable results.

[]Certain operations on variable 'bad_glob1' can interfere with each other and cause unpredictable values,

Certain operations on variable 'bad_glob2' can interfere with each other and cause unpredictable values. Variable value may be altered by write-write concurrent accesses.

|:|Funcﬁun 'bug_badlock_task' has no visible prototype at definition. ™

OK Cancel

2-22

See also Data race.

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/datarace.html

Reviewing Results

Benefits: Conflicts between two write operations in different threads can lead to
corruption of memory and indeterminate results. You can now distinguish these conflicts
from more benign conflicts between a write and read operation.

2-23

R2017b

Version: 2.4
New Features
Bug Fixes

Compatibility Considerations

R2017b

Analysis Setup

3-2

Green Hills Compiler Support: Set up Polyspace analysis
easily for code compiled with Green Hills MULTI Compiler

Summary: If you build your source code with the Green Hills® MULTI compiler, in
R2017b, you can specify the compiler name for your Polyspace analysis. The analysis can
interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

You can specify these target processors directly: arm64, arm, 1386, x86 64, powerpc,
powerpc64, rh850 or tricore. See Green Hills Compiler (-compiler greenhills).

Target Environment

Compiler greenhills -

Target processor type |powerpc -

Benefits: You can now set up a Polyspace project without knowing the internal workings
of your MULTT compiler. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove unknown
language extensions from your preprocessed code.

OSEK Multitasking Support: Detect the multitasking
configuration for your OSEK application automatically

Summary: In R2017b, you can provide an OIL file that Polyspace parses to detect the
multitasking configuration for your OSEK application. Polyspace can interpret the OIL file
definitions to set up your concurrency model.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/greenhillscompilercompilergreenhills.html

Analysis Setup

Bug_Finder_Example 3

[~ Target & Compiler
Macros
“ Environment Settings
----- Inputs & Stubbing

----- Coding Rules & Code Metrics
----- Bug Finder Analysis

[~ Code Prover Verification

- Verification Assumptions
> Check Behavior

Precision

Scaling

Multitasking

[[] Enable automatic concurrency detection for Code Prover

OSEK. multitasking configuration

Q1L files selection | custom

File

For more information, see 0SEK multitasking configuration (-osek-

multitasking).

Benefits: You no longer need to configure multitasking manually to analyze your OSEK
application. Polyspace detects the tasks, interrupts, and critical sections of your model.

Incremental Analysis in Eclipse: Detect bugs as you type and
save code in your Eclipse IDE

Summary: In R2017b, if you install the Polyspace plugin in your Eclipse™ IDE, the
analysis runs each time you save your code.

3-3

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html

R2017b

& Polyspace - BugFinder_C/sources/programming.c - Eclipse

File Edit Source Refactor MNavigate Search Project Run Polyspace Window Help

s 019 "*t @S i > Run
y Ty Sto
(1 Project Explorer &2 = g <= 0| ke - p-)
C5 Bugkinder € : % Configure Project
il Includes Reload Results
v [sources 14 Close Resuits
i ;o:cf:.lrrency.c -/ Run Fast Analysis on Save
1 dataflow.c L
[€ dynamicmemory.c \¥] Open Results in PVE
\c| goodpractice.c =
[n lib_crypto_checkers.h Show View
Lc} main.c (Z) Help
Le] r

numerical.c

FiX.

2| L] staticmemeory.c

» ishared(int signum)

i1Se @ vo.la

|€| concu

=

Benefits: You do not have to launch the Polyspace analysis explicitly. You can detect bugs

during coding.
Additional Considerations

* What types of bugs does the analysis look for?

The analysis looks for the defects that can be quickly detected. You get the same
results as if you had specified the option Use fast analysis mode for Bug Finder (-

fast-analysis).

If you want to look for other kinds of defects, specify the defect checkers in your
configuration and launch the analysis explicitly. See Run Polyspace Analysis in Eclipse.

* Can I disable the automatic analysis?

You can enable or disable the automatic analysis. Select or clear Polyspace > Run

Fast Analysis on Save.

Polyspace API in MATLAB: Configure analysis, run analysis,

and read analysis results with a single MATLAB object

Summary: In R2017b, you can use a single MATLAB object for the entire Polyspace
analysis. The analysis has two subobjects, one for configuring analysis and another for

reading results.

obj = polyspace.Project

3-4

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/run-polyspace-analysis-in-eclipse.html

Analysis Setup

% Configure analysis

obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ‘'examples',...
"cxx', 'Bug_Finder Example', 'sources', 'numerical.c')};
obj.Configuration.TargetCompiler.Compiler = 'gnu4.9"';

obj.Configuration.ResultsDir = fullfile(pwd, 'results');

0/0
b

Run analysis
fStatus = obj.run('bugFinder");

% Read results
bfSummary = obj.Results.getSummary();

For more information, see polyspace.Project.

Benefits: You need fewer variables for the Polyspace analysis. You can also use the same
object for reading both Bug Finder and Code Prover results.

Additional Considerations

Are the pre-R2017b ways of scripting a Polyspace analysis still supported?

The objects polyspace.Options, polyspace.BugFinderResults and
polyspace.CodeProverResults are still supported. For easier scripting, it is
recommended that you make these replacements:

To configure analysis, instead of the polyspace.Options object, use the
Configuration subobject of the polyspace.Project object.

For instance, instead of:

opts = polyspace.Options

opts.ResultsDir = fullfile(pwd, 'results');
Use:

obj = polyspace.Project

obj.Configuration.ResultsDir = fullfile(pwd, 'results');

To read results, instead of the polyspace.BugFinderResults and
polyspace.CodeProverResults objects, use the Results subobject of the
polyspace.Project object.

For instance, instead of:

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/polyspace.project-class.html

R2017b

3-6

resultsFolder = fullfile(pwd, 'results');

opts = polyspace.Options;

opts.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
‘cxx', 'Bug Finder Example', 'sources', ‘'numerical.c')};

opts.ResultsDir = resultsFolder;

polyspaceBugFinder(opts);

resObj = polyspace.BugFinderResults(resultsFolder);
resSummary = resObj.getSummary();

Use:

resultsFolder = fullfile(pwd, 'results');

obj = polyspace.Project;

obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...

‘cxx', 'Bug Finder Example', 'sources', ‘'numerical.c')};
obj.Configuration.ResultsDir = resultsFolder;

bfStatus = obj.run('bugFinder"');

resSummary = obj.Results.getSummary ();

Compiler-Specific Keywords: Nonstandard compiler-specific
keywords are only supported when you specify compiler

Summary: In R2017b, compiler-specific keywords are enabled only when you specify a

supporting compiler. For instance, far is a keyword for certain compilers but not a
keyword for others.

Benefits: When configuring your Polyspace project, it is sufficient to specify your
compiler. Previously, certain keywords were disabled irrespective of your compiler choice.
If your compiler supported those keywords, you had to explicitly enable them.

Compatibility Considerations

In existing projects that use the compiler option none (now generic), you can see
compilation errors. Previously, certain nonstandard keywords such as data were removed

Analysis Setup

during preprocessing because they were not relevant for the analysis. This syntax did not
cause compilation errors.

data int tab[10];

Now, the nonstandard keywords are recognized based only on your choice of compiler. If
you use a generic compiler, the analysis does not recognize the nonstandard keywords as
keywords and does not remove them during preprocessing. For instance, the preceding
syntax causes compilation errors. For workarounds, see Errors Related to Generic
Compiler.

POSIX and BSD Standards: Use functions from these
standards without additional setup

Summary: In R2017b, you can run analysis on code containing POSIX or BSD-specific
functions without additional setup, for instance, defining macros such as

_POSIX SOURCE. As an example, you can analyze code that uses functions from
unistd.h out of the box. You do not have to specify the location of unistd.h or perform
additional configuration.

Benefits: You can quickly run analysis on code that uses functions specific to POSIX or
BSD. If you do not provide the headers, Polyspace uses its own implementation of the
functions for analysis.

Changes in analysis options and binaries

In R2017b, the following options have been added, changed, or removed.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/errors-related-to-generic-compiler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/errors-related-to-generic-compiler.html

R2017b

3-8

New Options
Option Description
OSEK multitasking configuration (-osek- See OSEK

multitasking)

Multitasking Support
release note.

-xml-annotations-description

See Code Annotations
release note.

Compiler options:

* Management of size t (-size-t-type-1is)
* Management of wchar t (-wchar-t-type-is)

Replaces previous
options related to
size tand
wchar_t.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/xmlannotationsdescription.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html

Analysis Setup

Updated Options

Option

Change

Compiler (-compiler)

Option value none
changed to
generic.

New value
greenhills
added. See Green
Hills Compiler
Support.

Option value iso
removed. Use
generic instead.

Option values
visual, visuale,
visual7.0,
visual7.1,
visual8 and
visuallo
removed. Use
visuallo.o
instead.

Option value gnu
removed. Use
gnu3.4 instead.

Target processor type (-target)

Target powerpc64
added for Diab
compiler. See Diab
Compiler (-compiler
diab).

Options related to packing of data structures:

* Ignore pragma pack directives (-ignore-pragma-pack)

* Pack alignment value (-pack-alignment-value)

Available for all
compilers.

3-9

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/packalignmentvaluepackalignmentvalue.html

R2017b

3-10

Option

Change

Enum type definition (-enum-type-definition) (Polyspace
Code Prover™)

Option value
defined-by-
standard changed to
defined-by-
compiler.

Invalid use of floating point operation

You can detect a
comparison to 0.0
when you add the
option -detect-
bad-float-op-on-
zero.

The defect is renamed
in the user interface
to: Floating point
comparison with
equality
operators. The
command-line
parameter is still
BAD FLOAT OP.

-asm-begin and -asm-end

Available for all
compilers.

https://www.mathworks.com/help/releases/R2017b/codeprover/ref/enumtypedefinitionenumtypedefinition.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html

Analysis Setup

Removed Options

Option Status

More Information

Management of 'for loop' Warning
index scope (- for-Tloop-
index-scope)

Your choice of compilers determines the
specification of for loop index variables.

If you specify an older version of the
Microsoft® Visual C++® compiler such
as visual6, visual7.0 or visual7.1,
the analysis considers that a for loop
index is visible outside the loop.
Otherwise, the analysis considers that
the index is visible only inside the for
loop.

Set size_t to unsigned long (- |Warning
size-t-is-unsigned-long)

Use the option Management of size t (-
size-t-type-is).

-wchar-t-is-unsigned-long |Warning
and -wchar-t-is
-wchar-
t-1is has
been

removed
from the
user

interface
only.

Management of size t (-size-t-type-
is)Use the option Management of
wchar t (-wchar-t-type-is).

-static-headers-object Warning

The permissive linking introduced by -
static-headers-object now happens
by default. The option is not required.

Compatibility Considerations

If you use scripts that contain the removed or updated options, update your scripts
accordingly. In the Polyspace user interface, if an option is replaced by another option,
the replacement occurs automatically in your configuration.

3-11

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html

R2017b

Analysis Results

3-12

Security Standards Support: Detect violations of all secure
coding guidelines from ISO/IEC Technical Specification
17961:2013 and more guidelines from SElI CERT C Coding

Standard

Summary: In R2017b, you can check your code against all the guidelines from the
ISO/IEC TS 17961:2013 Standard, including guidelines for signal handlers and file
manipulations. Polyspace Bug Finder also covers additional CERT C coding defects.

Signal Handler Defect Checkers

Defect

Issue Detected

Shared data access within signal
handler

You use a signal handler to access a shared
object that is neither of type volatile
sig atomic_t nor a lock-free atomic
object.

Signal call from within signal
handler

You call signal() from within an
interruptible signal handler.

Return from computational
exception signal handler

Your signal handler returns normally after a
computational exception signal SIGFPE,
SIGILL, or SIGSEGV.

Function called from signal
handler not asynchronous-safe

You use a signal handler to call a function
that is not asynchronous-safe per the POSIX
standard.

Function called from signal
handler not asynchronous-safe

(strict)

You use a signal handler to call a function
that is not asynchronous-safe per the C
standard.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/shareddataaccesswithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/shareddataaccesswithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/signalcallfromwithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/signalcallfromwithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/returnfromcomputationalexceptionsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/returnfromcomputationalexceptionsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafe.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafe.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafestrict.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafestrict.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafestrict.html

Analysis Results

File and 1/0 manipulation Defect Checkers

Defect

Issue Detected

Misuse of a FILE object

You dereference a pointer to a FILE object
or manipulate the object through its
pointer.

File descriptor exposure to child
process

You use the same file descriptor in multiple
processes.

Invalid file position

You call fsetpos () with a file position that
was not returned from fgetpos ().

Alternating input and output from
a stream without flush or
positioning call

You perform alternating read and write
operations on a stream without a flush or
positioning call.

Use of indeterminate string

You do not reset the output buffer of
fgets() or fwgets() when they fail.

Memory and Pointer Manipulation Defect Checkers

Defect

Issue Detected

Alignment changed after memory
reallocation

You change the memory allocation of an
object to a less strict alignment.

Mismatched alloc/dealloc
functions on Windows

In Windows®, you deallocate memory with a
function that does not match the allocation
function.

Subtraction or comparison between
pointers to different arrays

You subtract or compare pointers to
different arrays, or null pointers.

3-13

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofafileobject.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/filedescriptorexposuretochildprocess.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/filedescriptorexposuretochildprocess.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/invalidfileposition.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofindeterminatestring.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alignmentchangedaftermemoryreallocation.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alignmentchangedaftermemoryreallocation.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/mismatchedallocdeallocfunctionsonwindows.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/mismatchedallocdeallocfunctionsonwindows.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html

R2017b

3-14

Other Defect checkers

Defect

Issue Detected

Missing byte reordering when
transfering data

You transfer data without matching the
endianness of the host and network.

Unsafe call to a system function

You call system(), popen(), _popen(),
or wopen().

Use of automatic variable as
putenv-family function argument

You use an automatic duration variable as
the argument of a putenv-family function.

Misuse of structure with flexible
array member

You do not allocate and copy a structure
with a flexible array member dynamically.

Call through non-prototyped

function pointer

You declare a pointer to a function with
unspecified parameters.

MISRA C:2012 Directive 1.1: Detect instances of
implementation-specific behavior in your code

Summary: In R2017b, you can detect possible violations of MISRA C:2012 Directive 1.1.
The directive requires that you understand and document any implementation-defined
behavior that affects the program output. See MISRA C:2012 Dir 1.1.

Benefits: The analysis detects constructs that can have implementation-defined behavior.
If you have such constructs in your code, you can find how your compiler implements
them. Once you understand and document all implementation-defined behavior, you can
be assured that all output of your program is intentional and not produced by chance.

Changes to coding rule checking

Updated Specifications

In R2017h, the following changes have been made in checking of previously supported

MISRA C and MISRA C++ rules.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/missingbytereorderingwhentransferringdata.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/missingbytereorderingwhentransferringdata.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/unsafecalltoasystemfunction.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofautomaticvariableasputenvfamilyfunctionargument.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofautomaticvariableasputenvfamilyfunctionargument.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofstructurewithflexiblearraymember.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofstructurewithflexiblearraymember.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/callthroughnonprototypedfunctionpointer.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/callthroughnonprototypedfunctionpointer.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misrac2012dir1.1.html

Analysis Results

Rule Description Improvement

MISRA C: 2004 |Array indexing shall be |The rule checker flags array indexing on

Rule 17.4 and |the only allowed form of |nonarray pointers. Previously, the checker

MISRAC++ pointer arithmetic. flagged only explicit pointer arithmetic on

Rule 5-0-15 pointers.

MISRA C: 2012 |Subtraction between The rule checker flags more complex cases,

Rule 18.2 and |pointers shall only be such as a subtraction between a pointer to a

MISRA C+ applied to pointers that |local array and a pointer to a function

+ 5-0-17 address elements of the |argument. These additional results

same array. correspond to defects flagged by the checker

Subtraction or comparison between
pointers to different arrays.

MISRA C:2004 |An identifier with The rule checkers flag multiple definitions

Rule 8.9, external linkage shall only if the definitions occur in different files.

MISRA C:2012 |have exactly one external |The checkers do not consider tentative

Rule 8.6 and definition. definitions as definitions.

MISRA C++

Rule 3-2-4 For instance, this code does not violate the

rule:

int val;
int val=l;

3-15

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html

R2017b

Reviewing Results

Result Review Workflow: Hide results that you reviewed once
and justified through source code annotations

Summary: In R2017b, if you justify a result through source code annotations, subsequent
analyses do not redisplay the result. The results do not appear in your results list or

source code.

void bug deadcode (void)
{
suit card = nextcard():
if {{card < SPADES) || {card >
card = UNENOWN_SUIT;
| if {card > 7) | /* polyapace
do_something suit (card);

1

CLUBS))

% f

If you want to revisit those justified results, you can make them visible in one-click.

Review Scope: All results
New results onby: Off

Showing 381 out of 381 possible results
Filtered results: 0
Hidden results: 0

Hide results justified from the source code

Columns with active filters:
Mo filtered columns

Clear active filters

Benefits: When you decide not to fix a finding, you can justify it through source code
annotations. That finding does not clutter your subsequent analysis results.

3-16

Reviewing Results

Suppose the analysis flags an error-handling statement as dead code. You do not want to
remove the statement because future code can trigger the error and make the error-
handling necessary. You can justify the dead code and choose not to see it again.

Additional Considerations

How can I use source code annotations to justify a result?

You can directly type source code annotations in the correct format. See Annotate and
Hide Known or Acceptable Results.

Alternatively, you can copy annotations from information in the user interface.

* In Eclipse, right-click the result to insert a justification directly in the source code.

* In Eclipse and the Polyspace user interface, assign one of the statuses Justified,
No action planned, or Not a defect to a result. Right-click the result to copy
your justification and paste it in a source code editor. See Annotate and Hide
Known or Acceptable Results.

Will the hidden results still appear in the report?
The hidden results still appear in the report. The results are hidden from view to save

review effort. The reports are meant for complete documentation of your results. You
cannot hide analysis results from the reports.

Code Annotations: Justify results or define your own format
with a new annotation format

Summary: In R2017b, you can justify your results with the new Polyspace annotation
syntax, or by using your own custom format. Polyspace also interprets existing code
annotations that use a different syntax.

Benefits:

Easier results review: With the new annotation format, you can provide a justification
for multiple types of results on the same line. Previously, you had to enter the
justification for different types of results, such as defects and coding rules violations,
on different lines.

Custom annotation format: You can use an XML file to define any annotation format
and map it to the Polyspace syntax. When you analyze your code, Polyspace can
interpret the annotations regardless of the format.

3-17

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/xmlannotationsdescription.html

R2017b

Polyspace still supports annotations that use the old syntax.

MISRA Comments and Code Annotations: Import your existing
MISRA C:2004 justifications to MISRA C:2012 results

Summary: In R2017b, when you check your code against MISRA C:2012 rules, Polyspace
imports existing justifications for MISRA C: 2004 violations.

All results ~ l‘|=f. New v <a 5 @ Showing 1020 -

Type “F Check: (3) ~1 5 Status = Severity = Comment: {3) ¥
WMISRA C:2004 6.3 Typedefs that indicate size and sig... Unreviewed Unset MISA.A2004-6, 3 comment
MISRA C:2004 6.3 Typedefs that indicate size and sig... To fix Medium MISAAZ004-6.3

MISRA C:2004 8.1 Functions shall have prototype de... To fix Low MISRA2004-8,1

WVISRA C:2004 11,3 A cast should not be performed b, Justified Low MISRA2004-11.3

MISRA C:2004 11,4 A cast should not be performed b. .. Unreviewed Unset MISAA2004-11, 4 comment
MISRA C:2004 12,12 The underlying bit representatio. .. Unreviewed Unset MISAA2004-12, 12 comm...
MISRA C:2004 13,2 Tests of a value against zero sho... Mot a defect Low MISRA2004-13.2

WMISRA C:2004 14,4 The goto statement shall notbe ... Mot a defect Low MISRAZ2004-14.4

MISRA C:2004 14.9 An if (expression) construct shall ... Mot a defect Low MISAA2004-13.2
19.5 Macros shall not be #define'd an... |Justified

3-18

The analysis maps these justifications to the corresponding MISRA C: 2012 rules, if they
exist.

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-code-for-known-results.html

Reviewing Results

All results w | T New v <A 52 (@& Showing8/14 =

Type = Chedk ~1 ¥ Status = Severity < Comment: (7) ¥
MISRA C:2012 Dir 4.6 typedefs that indicate size and... Unreviewed Unset MISA.A2004-6, 3 comment
MISRA C:2012 Dir 4.6 typedefs that indicate size and... To fix Medium MISRA2004-6,3
WMISRA C:2012 8.4 A compatible dedaration shall be v... To fix Low MISAA2004-8.1
MISRA C:2012 11,3 A cast shall not be performed bet. .. Unreviewed Unset MISAA2004-11. 4 comment
WMISRA C:2012 114 A conversion should not be perfo... Justified Low MISAAZ2004-11.3
MISRA C:2012 14,4 The controlling expression of ani... Mot a defect Low MISRAZ2004-13.2
WMISRA C:2012 15,1 The goto statement should not b... Mot a defect MISRAZ2004-14.4
N e e S T =T C U

For more information, see Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results.

Benefits: You can transition from MISRA C:2004 to MISRA C:2012 compliance. If you
have already justified a coding rule violation for MISRA C: 2004, you do not need to
review the same result for the corresponding MISRA C:2012 rule.

Results Review Workflow: Sort and filter results by subtype

Summary: In R2017b, you can group your results by subtype through the new Detail
column in the Results list pane. This column shows the first line from the Results
Details pane, which has additional information about a result.

For instance, multiple issues can trigger the same coding rule violation. The Detail
column shows the specific issue that triggered the rule violation.

3-19

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/import-existing-misra-c-2004-justifications-to-misra-c-2012-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/import-existing-misra-c-2004-justifications-to-misra-c-2012-results.html

R2017b

T New [5+ <5 2> @ Showing 1,827/1,827 v

Family “F Information F Detai 1 &F File ¥ Function &F

| ElTainted data 19
E-MISRA C:2004 1514
E|--1 Environment 50
[£-1.1 All code shall conform to IS0 $899: 1990 ‘Programming languages - C', amended and corrected by ISO/IEC $899/C0OR 1:1995, ISO/IEC $399/AMD 1: 1295, and ISQ/IEC

= * Category: Required AMSI C90 forbids ‘long double’ type. programming. bug_missingerrnoreset()
~ * (Category: Required AMSI C90 forbids ‘long double’ type. programming. corrected_missingerrnoreset()
~ * (Category: Required AMSI C90 forbids ‘long long int' type. CONCUFTENCY.C corrected_datarace_task4()
~ * Category: Required ANSI €90 forbids ‘long long int’ type. CONCUITENCY.C File Scope
~ * Category: Required ANSI €90 forbids ‘long long int’ type. CONCUITENCY.C File Scope
L. * Category: Required ANSI €90 forbids ‘long long int’ type. COMCUITENCY.C bug_datarace_task4()
: Required ANSI C90 forbids designated initializer. numerical.c corrected_intstdlib()
: Required ANSI C90 forbids designated initializer. ccnrrected_int:;tdlihl:]
: Required AMSI C90 forbids designated initializer. ccnrrected_impwcnperarraﬁnit[]
: Required AMSI C90 forbids designated initializer. ccnrrected_impwcnperarraﬁnitl:]
: Required AMSI C90 forbids designated initializer. I:-ug_imprcnperarrayinitl:]
: Required AMSI C90 forbids designated initializer. I:-ug_imprcnperarrayinitl:]
: Required C390 forbids designated initializer. corrr:ctr:d_impraperarrayinitl:]
: Required SI C90 forbids designated initializer. corrected_impmperarrawnitl:]
: Required AMSI C90 forbids designated initializer. t-ug_imprcnperarrayinitl:]
. * Category: Required AMSI C90 forbids long long integer constants. programming.c corrected_unsafestrtonumeric()
~ * Category: Required ANSI €90 forbids long long integer constants. tainteddata.c sanitize_atoi()
~ * Category: Required ANSI €90 forbids mixed dedarations and code. goodpractice.c corrected_hardcodedmemsize()
L. * Category: Required ANSI €90 forbids mixed dedarations and code. goodpractice.c corrected_hardcodedloopboundary()

Benefits: You can easily group edit statuses or comments for results of the same subtype.
In the Results List pane, group results by family, then within a result family use the
Detail column to sort and select a subset.

Constraint Specification: Navigate easily to the constraint
specification interface for Bug Finder results

Summary: In R2017b, you can open the Specified Constraints window when viewing Bug

Finder results. In this window, you can specify external constraints on global variables in
your code.

3-20

Reviewing Results

MName File Attributes Data Type Main Generator Called Init Mode Init Range Initialize Pointer
= I N I S S —
------ file.c const int32 « -1000,.1000
iUser Defined Functions
E-----Smbbed Functions
E-----I"vlc:n Applicable
< >

To see the Specified Constraints window, with the Bug Finder results open, select
Window > Show/Hide View > Specified Constraints.

Benefits: If a global variable has a fixed value assigned in your code:

const int var = 1;

but you want to analyze the code for multiple values of the variable, you can override the
assignment by using external constraints. For instance, if you see Dead code defects in
your results from the fixed value of a variable, you can navigate to the Specified
Constraints window and specify a range for the variable.

Result Status: Assign statuses that directly correspond to
stages of development workflow

Summary: In R2017b, you can assign these statuses to a result. Each status corresponds
to a stage in your code analysis workflow.

¢ Unreviewed (default status)

* To investigate

* To fix

* Justified

* No action planned

* Not a defect

* Other

Benefits: You can follow your review progress more easily.

Additional Considerations

3-21

R2017b

3-22

* How can I use the statuses to follow my review progress?

You can follow your progress in the Polyspace user interface or the Polyspace Metrics
web interface.
* Polyspace user interface: You can filter all results that have a certain status.

* Polyspace Metrics: You can see the percentage of results reviewed and justified. If
you assign a status other than Unreviewed to a result, the software considers the
result as reviewed. If you assign one of these statuses, the software considers the
result as justified: Justified, No action planned, or Not a defect.

* Can I create my own status?

You can still create custom statuses. Select Tools > Preferences and create your own
statuses on the Review Statuses tab.

Compatibility Considerations

If you open results from a previous release, the statuses are updated to the new release.
The updates are:

* FixorInvestigate—-To fix or To investigate

* Improve-To fix

* Undecided - Unreviewed.

If you open results from a previous release, the severity Not a defect is updated to
Unset.

If your source code annotations use statuses from a previous release, the software reads
your annotations using the updates. The software does not change the annotations
themselves.

R2017a

Version: 2.3
New Features
Bug Fixes

Compatibility Considerations

R2017a

Analysis Setup
Unified User Interface: Create and maintain a single
Polyspace project for Bug Finder and Code Prover analysis

Summary: In R2017a, you can run Bug Finder and Code Prover analysis on the same
Polyspace project in the same user interface.

File Reporting Metrics Tools Window Help
& E | [>> Run Bug Finder |» | [Stop | [}

Wl Pro; Bug Finder bt
@ W N LT Code Prover Bug_Finder_Ex...-MISRA-checker X
E"_j Bug_Finder_Example Create new Bug Finder result folder EI---T:arget 8 Compiler Bug Finder Analysis

I3 Project Source Files - Macros

-] sources

Create new Code Prover result folder Environment Settings

H [3 Project Indude Folders [# RunAllModules — |i Inputs & Stubbing N — .aII -
-7 Bug_Finder_Example ||~ Multitasking o | |
--E Module Source Files || Coding Rules & Code Metrics o o
- Configuration %% Bug Finder Analysis iy S:'a':erlca
gi A Bug_Finder_Example-with-MISRA-checker [Code Prover Verification ic memory
- . ificati ; [/| Dynamic memary
1 Result - Verification Assumptions :
2] Results [Completed] Check Behavior (|| Data flow
= Precision [#- || Resource management
Scaling [+ || Programming
----- Reporting [+ [/] Concurrency
""" Run Settings [Ser:urity
----- Advanced Settings (- [/] Tainted data
[#- /| Good practice

Benefits:
» Single entry point for two products: You launch the Polyspace user interface only once
from one icon on your desktop.

» Easier switching between products: After you run a Bug Finder analysis, you can
switch to the more rigorous Code Prover analysis in one click.

* One project, one configuration: Add source files and specify your analysis options only
once. After you set up your project, you can switch between the products without
having to reconfigure.

Additional Considerations:

* What if I only want to run a Bug Finder analysis?

4-2

Analysis Setup

You have to set the options that apply to a Bug Finder analysis. Most options are
common between Bug Finder and Code Prover. So, you still have the benefit that most
of your options will be set if you ever switch to Code Prover.

The options specific to Bug Finder appear in the Bug Finder Analysis node, and the
ones specific to Code Prover in the Code Prover Verification node and the nodes
underneath.

If I run analysis in the two products, will the two sets of results appear together?

Yes, but not in the same view. The two sets of results appear under the same project,
both in the user interface and in the physical folder locations.

* In the user interface, in the Project Browser, the Bug Finder results appear with
thel=| icon and the Code Prover results appear with thel* icon.

* In your file explorer, you find the result folders for both analysis under one project
folder.

However, after you run the two analyses, you have to open the two sets of analysis
results separately to review them. In the user interface, double-click one of the two
result icons to open the results corresponding to that product.

Besides analysis options, are there other changes from pre-R2017a that I should be
aware of?

If you were previously using only one of the two products, you will now notice the
following differences.

Bug Finder User:

* You can now create multiple modules in your Polyspace project to analyze separate
components of your source code.

When you create a project and add your source files, they are automatically added
to the first module. If you add source files later, you have to select them and using
the right-click option Copy to Module_n, copy them to the module that you want.

* You can now choose to create a new result folder for a second analysis on the same
module. Use the option Create new Bug Finder result folder from the Run
button dropdown. Prior to R2017a, there was one result folder for Bug Finder. If
you ran a second analysis, it overwrote the previous results. Note that the
overwriting is still the default behavior.

4-3

R2017a

4-4

A new icon is used to denote defects.

Before R2017a:

v". Chedk

Assertion

Invalid use of == operator

Invalid free of pointer

Missing unlock

Bad order of dropping privileges

Bad order of dropping privileges

IUse of previously dosed resource

Writing to const qualified object

R2017a:

v". Chedk

Assertion

Invalid use of == operator

Invalid free of pointer

Missing unlock

Bad order of dropping privileges
Bad order of dropping privileges

* Character value absorbed into EOF
LIse of previously dosed resource

O0C0O00D00O0:

Code Prover User:

If you run a second analysis on the same module, by default, it overwrites the
previous results. Prior to R2017a, a new result folder was created by default every
time you ran an analysis.

You can change this default behavior and create a new result folder for the second
analysis. Use the option Create new Code Prover result folder from the Run
button dropdown.

If some of your files do not compile, the analysis continues with the remaining files.
If a file with compilation errors contains a function definition, the analysis
considers the function as undefined and uses a function stub instead. You can see

Analysis Setup

which files did not compile on the Output Summary pane and also in the report
generated from the verification results.

Previously, the default analysis required that all of your files must compile. To
revert to this default behavior, use the option Stop analysis if a file does not
compile (-stop-if-compile-error).

* A new icon is used to denote definite run-time errors or red checks.

Before R2017a:

.-'. ChEEk
COut of bounds array index

Ileqally dereferenced pointer
Maon-terminating call

e T

Mon-terminating loop

L Invalid use of standard library routine

R2017a:

--". Chedk

Out of bounds array index

o

@

[T Ilegally dereferenced pointer
[] Mon-terminating call

@

Mon-terminating loop

Invalid use of standard library routine

I use DOS/UNIX®/MATLAB scripts to launch the analysis. How does this change affect
me?

The change does not affect you directly. For instance, you still use two separate
commands polyspace-bug-finder-nodesktop and polyspace-code-prover-
nodesktop to run analysis from the DOS/UNIX command line. However, if you specify
your options in a Polyspace project in the user interface and then create a script from
the project, you have to specify your options only once for both products.

Once you specify your options in the Polyspace project, you can easily create a script
for the individual products. For instance, to create a Windows batch file that runs a
Code Prover analysis, run the command:

polyspace -generate-launching-script-for myproject.psprj

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html

R2017a

To create a Windows batch file that runs a Bug Finder analysis, run the command:

polyspace -bug-finder -generate-launching-script-for myproject.psprj

Easier Compliance with Security Standards: Choose CWE,
CERT C99, or ISO/IEC TS 17961 coding standard and address
corresponding violations through Polyspace results and
security reports

Summary: In R2017a, you can provide a security standard such as CWE, CERT C99 or
ISO/IEC TS 17961 for Polyspace analysis.

Analysis: The analysis runs defect and coding rule checkers that correspond to elements
in the standard.

Bug Finder Analysis
7| Find defects | CERT-ules P w
—|--|./| Defects
+ Mumerical
+ Static memory
+ Dynamic memory
+ Data flow
+ Resource management
+ Programming
+ Concurrency
+ Security
41 [7] Tainted data
[| Good practice

Results: After analysis, you see the security standard ID-s corresponding to each result.

4-6

Analysis Setup

:#.JI results - TelNew E]v <@ 5> @ Showing0jo

Famly & Check #F File =f Function < |CERTID &F
o= Incorrect pointer scaling programming. c bug_badptrscaling() “XPO&-C ARR33-C

O F Missing lock CONCUFTENCY.C File Scope COM01-C

oF Bitwise operation on negative value numerical.c bug_bitwiseneg() MT13-C

oF File manipulation after chroot) withou... security.c bug_chrootmisuse() 20S05-C

o F File manipulation after chroot) withou... security.c bug_chrootmisuse() P0505-C

oF Yulnerable permission assignments security.c bug_dangerouspermissions() ~1006-C

o F Mismatch between data length and size security.c bug_datalengthmismatch() [ABR33C

Report: When you generate a report, you can choose a template tailored for a specific
security standard. The report shows the security standard ID-s corresponding to each

result.

I

5743 Unsigned integer conversionov ~ Low
erflow

5744 Unsigned integer conversionov Low
erflow

5742 | Sign change integer conversion Medium
overflow

bug_uintconvovil()

bug_uintconvovfl wraparound()

bug_signchange()

N T
Conversion from unsigned int64 to unsigned in

16 overflows.

Valid range: [0 .. 65533]

Conversion from unsigned int32 to unsigned in
8 overflows
Valid range: [0 .. 255]

Conversion from unsigned int32 to inf32 overf
lows.
Valid range: [-2°31 .. 2°31-1]

Benefits: You can easily adhere to a security standard using Polyspace analysis.

For details of the workflow, see Check Code for Security Standards.

Incremental Analysis of Specific Checks: Analyze only files
edited since previous analysis to quickly find new defects and
coding rule violations

Summary: In R2017a, you can run a fast analysis mode in Bug Finder. In this mode, if
you perform an analysis and then edit some files, a later analysis considers only the files
that you edited.

https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/check-code-for-cwe-cert-c-and-other-standards.html

R2017a

4-8

Analysis Mode

[] Use fast analysis mode for Bug Finder

Use fast analysis mode for Bug Finder (-fast-analysis)
Run Bug Finder in fast analysis mode. Only modified files are analyzed.
Mote: Fast-analysis mode checks only a subset of the Bug Finder defects and coding rules.

(2 More Help

Benefits: You wait less for analysis results from your second analysis onwards. During
development, you can frequently run analysis in fast mode and quickly check for new
defects.

Additional considerations:
» s the fast analysis mode different from a full Bug Finder analysis?

In fast analysis mode, Bug Finder checks for a subset of defects and coding rules only.
In R2017a, these defects and rules can be found within a single compilation unit, such
as a single function or file. The software does not perform interprocedural or cross-
functional analysis.

» IfIenable a defect checker that cannot be checked fast, what happens in the fast
analysis mode?

The defect checker is internally disabled. When you switch back to full analysis, the
defect checker is enabled again. For information on:

* The defect checkers that can run fast, see Results Found by Fast Analysis.

* The option to enable fast analysis, see Use fast analysis mode for Bug Finder (-
fast-analysis).

TASKING Compiler Support: Set up Polyspace analysis easily
for code compiled with Altium TASKING compiler

Summary: If you build your source code with the Altium® TASKING compiler, in R2017a,
you can specify the compiler name for your Polyspace analysis. The analysis can interpret
macros that are implicitly defined by the compiler and compiler-specific language
extensions such as keywords and pragmas.

https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/results-found-by-fast-analysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

Analysis Setup

You can specify the following target processors directly: tricore, c166, rh850 or arm.
See TASKING Compiler (-compiler tasking).

Target Environment

Compiler tasking L

Target processor type | tricore -

Benefits: You can now set up a Polyspace project without knowing the internal workings
of your TASKING compiler. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove unknown
language extensions from your preprocessed code.

Updated Visual C++ Support: Set up Polyspace analysis easily
for code compiled with Microsoft Visual C++ 2015 compiler

Summary: If you build your source code with the Microsoft Visual C++ 2015 compiler, in
R2017a, you can specify the compiler name for your Polyspace analysis. The analysis can
interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

Target Language

Source code language CPP P

Target Environment

Compiler visuall4.0 b

For more information, see Compiler (-compiler).
Benefits:

» Easier compilation: You can now set up a Polyspace project without knowing the
internal workings of your Microsoft Visual C++ 2015 compiler.

* More precise analysis: The analysis provides precise results when you use compiler-
specific extensions.

4-9

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/taskingcompilercompilertasking.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/compilercompiler.html

R2017a

4-10

Autodetection of Concurrency Primitives: Multitasking model
detected from Windows, pC/OS Il or C++11 multithreading
functions

Summary: In R2017a, if you use the Windows, uC/OS II or C++11 functions for
multitasking, the Polyspace analysis can interpret them semantically.

Polyspace interprets the following functions:

Family [Thread Created Critical Section Begins |Critical Section Ends
Window |CreateThread EnterCriticalSectio |LeaveCriticalSectio
S n n

pnC/OS II |0STaskCreate 0SMutexPend OSMutexPost

C++11 |std::thread::thread|std::mutex::lock std::mutex::unlock

Benefits: You do not have to adapt your code or specify your multitasking model
manually through analysis options. The analysis determines your multitasking model from
the functions in your code and finds data races or other concurrency defects.

Autodetection of Concurrency Primitives: Map Unsupported
Thread Creation Functions to Supported Functions

Summary: In R2017a, you can map your thread creation functions to thread-creation
functions that Polyspace can detect automatically. You can also perform the mapping for
functions that begin and end critical sections.

For instance, for the following code, you can map the functions createTask, takeLock
and releaselLock to the Pthreads functions, pthread create,
pthread mutex lock and pthread mutex unlock respectively.

/* Assume global variables and functions are defined */

void* taskl(void* a) {
takeLock(&lock) ;
varl++;
var2++;
releaselLock(&lock);
return 0;

Analysis Setup

void* task2(void* a) {
takeLock(&lock) ;
varl++;
releaselLock(&lock);
var2++;
return 0;

}

void main() {
createTask(taskl,&t 1d1,0,0);
createTask(task2,&t 1d2,0,0);
}

Benefits: Polyspace supports automatic concurrency detection only for certain families of
concurrency primitives. You can extend the support to your family of concurrency
functions by using this mapping.

If Polyspace determines your multitasking model from your code, the analysis can find
possible race conditions and other defects, without additional setup efforts. Otherwise,
you have to specify your multitasking model explicitly through the manual multitasking
options.

Additional considerations:
* How do I map an unsupported thread creation function to a supported function?

You specify the mapping in an XML file. You then provide the XML file as argument of
the analysis option - function-behavior-specifications.

For examples, see - function-behavior-specifications.
* How do I know which function to map to?

Map your function to the supported function that is most similar to your function in
the number and types of parameters.

For instance, in the above example, you can map the function createTask to the
thread creation functions pthread create (POSIX®), CreateThread (Windows) or
0STaskCreate (uC/OS II). However, the arguments of createTask align most closely
with pthread create.

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in matlabroot\polyspace

4-11

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/functionbehaviorspecifications.html

R2017a

\verifier\cxx\.matlabroot is the MATLAB installation folder, such as C:
\Program Files\MATLAB\R2017a.

Manual Multitasking Setup: Specify routines that disable and
reenable all interrupts

Summary: In R2017a, when specifying your multitasking model for analysis, you can
provide a routine that disables all interrupts.

For instance, in the following code, the function disable all interrupts disables all
interrupts until the function enable _all interrupts is called. Even if task, isrl and
isr2 run concurrently, the operations x=0 or x=1 cannot interrupt the operation x++.

int x;

void isrl() {
X = 0;

}

void isr2() {
X =1;

}

void task() {
disable all interrupts();

X++;
enable all interrupts();
}
Disabling all interrupts Disabling routine Enabling routine =] I:,ﬁ @

4-12

Benefits: If you protect operations on a shared variable by disabling interrupts, you can
specify this protection for the Polyspace analysis. The analysis uses this information to
give you more precise results for data race defects.

Additional considerations:

* Does the routine disable all preemption or preemption by only a certain class of
interrupts?

Analysis Setup

The routine that you specify for the option disables preemption by all:

* Noncyclic entry points
* Cyclic tasks
* Interrupts

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptible at all.

How are routines to disable interrupts different from protection via critical sections?

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isrl() {
begin critical section();
X = 0;
end critical section();

}

void isr2() {
X =1;
}

void task() {
begin critical section();
X++;
end critical section();

}

Here, the operation x++ is protected from the operation x=0 in isrl, but not from the
operation x=1 in isr2. If the function begin critical section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

In this way, critical sections are conceptually different from routines to disable all
interrupts. Typically, you use one pair of routines in your code to disable and reenable
interrupts, but you can have many pairs of lock and unlock functions that implement
critical sections.

4-13

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/entrypointsentrypoints.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/interruptsinterrupts.html

R2017a

Specifying Function Names for Options: Choose from
prepopulated list in user interface instead of entering
manually

Summary: In R2017a, for options that take function names, you can choose the names
from a list.

For instance, to specify which functions act as entry points to your multitasking
application, you can choose the names from a list as follows:

fo - —
Entry points ﬂ
Quick Filter = |:|':":| g ? ﬁ'
Q.= Type here to filter functions procl
proc2
Detected Functions

serverl
41 out of 41 functions server2
— o ~

compute_new_coordonates
degree_computation
functional_ranges
generic_validation
get_oi_pressure I
initialise_current_data
initregulate E]
interpolation

main

new_speed —
orderregulate
partial_init
polynomia

procl

proc2
reset_temperature
return_code

server 1
serverd =

m

Benefits: You do not have to enter the names manually. If the functions list is long, you
can start typing the function name to reduce the list.

4-14

Analysis Setup

Polyspace APl in MATLAB: Create MATLAB objects from
Polyspace projects to run analysis

Summary: In R2017a, you can create a MATLAB object from a Polyspace project
(.psrpj file). For instance, if you have a file myProject.psprj in the current working
folder, enter:

opts = polyspace.loadProject('myProject.psprj')

Use the object opts in MATLAB scripts to run a Polyspace analysis:
polyspaceBugFinder(opts);

Benefits:

You can now consider the following workflows:

» Set options in GUI and script analysis: Use the Polyspace user interface to specify
options in your Polyspace project, or adjust options based on results from a trial run.
After the options are stable, create a MATLAB object opts from the project and store
it in a MAT-file. As you move along in your development cycle, simply load opts from
your MAT-file, update opts.Sources to add new source files, update other properties
when required, and use opts to run analysis. For the object properties, see
polyspace.Options.

* Create project from your build command and script analysis: Use the function
polyspaceConfigure to create a .psrpj file from your build command (makefile).
Create a MATLAB object from that file to run analysis. In this way, you can use a
MATLAB script for the entire Polyspace analysis workflow beginning from your
makefile.

Additional Considerations:

* A single Polyspace project works for both Bug Finder and Code Prover. Can I likewise
use the object to run both a Bug Finder and Code Prover analysis?

Yes, once you create the MATLAB object from a Polyspace project, you can use it with
both functions polyspaceBugFinder and polyspaceCodeProver.

* Can I create an object from a project that I have from a pre-R2017a version of
Polyspace?

Yes, you can.

4-15

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.options-properties.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspaceconfigure.html

R2017a

4-16

Support for 128-bit variables

Summary: In R2017a, Polyspace Bug Finder analysis supports 128-bit variables.

Benefits: 128-bit variables in your code do not cause compilation errors. For instance, if
you use the GCC type _ int128, you can run Polyspace Bug Finder on your code.

Improvement in automatic project creation from build

systems

Summary: In R2017a, by default, automatic project creation will throw an error if a
project with the same name exists in the output folder.

If you encounter an error, avoid the name conflict: change the project name, output folder,
or remove your older project.

Benefits: You cannot overwrite existing projects by accident. If you use scripts that are
intended to overwrite existing projects, use the additional option -allow-overwrite.

Changes in analysis options and binaries

In R2017a, the following options have been added, changed, or removed.

New Options

Option Description

Use fast analysis mode for Bug Run analysis using faster local mode of Bug Finder.
Finder (- fast-analysis)
See Incremental Analysis of Select Checks on page 4-

7.
Disabling all interrupts (- Specify routines that disable and reenable interrupts.
routine-disable-interrupts
-routine-enable- See Manual Multitasking Setup on page 4-12.
interrupts)

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

Analysis Setup

Updated Options

Option Change More Information
Report template Renamed |New name: Bug Finder report
in user
interface | The command-line name is still -
report-template.
Batch Renamed [New name: Run Bug Finder analysis
in user on a remote cluster
interface
The option is now in the Run Settings
node in your project configuration.
The command-line name is still -batch.
Add to results repository Renamed |New name: Upload results to
in user Polyspace Metrics
interface
The option is now in the Run Settings
node in your project configuration.
The command-line name is still -add -
to-results-repository.
Compiler (-compiler) New values | You can specify the following arguments:
added

+ tasking
See TASKING Compiler Support on
page 4-8.

* visuall4.0

See Microsoft Visual C++ Support on
page 4-9.

4-17

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/compilercompiler.html

R2017a

4-18

Option Change More Information
Find defects (-checkers) New value |You can specify the following arguments:
added
« CWE
* CERT-rules
* CERT-all
+ 1IS0-17961
See Security Standards Checking on
page 4-6.
Check MISRA C:2012 (-misra3) |New value |You can specify the following arguments:
added

e CERT-rules
» CERT-all
« IS0-17961

See Security Standards Checking on
page 4-6.

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/finddefectscheckers.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/checkmisrac2012misra3.html

Analysis Setup

Removed Options

Option Status Description

Disable automatic Removed |Option will be removed in a future

concurrency detection (- release.

disable-concurrency-

detection) Detecting concurrency primitives
automatically saves time in setup and
does not impact performance. The option
is not required anymore.

Import Folder (-import-dir) |Warning Option will be removed in a future
release.

-easy-setup-preprocess Error Option will be removed in a future
release.

gui-api Error Binary will be removed in a future
release.
Use instead, polyspace-comments-
import.

polyspace-automatic- Error Binary will be removed in a future

verification release.

polyspace-remote Error Binary will be removed in a future
release.

polyspace-verifier Error Binary will be removed in a future
release.

rte-kernel Error Binary will be removed in a future
release.

Dialect (-dialect) Error Option will be removed in a future

release.

Use Compiler (-compiler) (Polyspace
Code Prover) instead.

4-19

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html

R2017a

4-20

Option Status Description
Target operating system (-0S- |Error Option will be removed in a future
target) release.
If you use this option in scripts, see the
list below for replacements:
* Linux: If you get compilation errors,
use Compiler (-compiler)
(Polyspace Code Prover) gnux. x.
Sometimes, you might also have to
set Preprocessor definitions (-D)
(Polyspace Code Prover) to Linux,
unix, or _ linux_ .
e Visual: Use Compiler (-compiler)
(Polyspace Code Prover) visualx. x
* Vxworks: Use the VxWorks®
configured template.
For more information, see Create
Project Using Configuration Template
(Polyspace Code Prover).
* Solaris: Remove -0S-target.
* no-predefined-0S: Remove -0S-
target.
Files and folders to ignore (- |Removed |Use the option Do not generate results

includes-to-ignore)

for (-do-not-generate-results-
for) to suppress results from headers
and sources in certain files or folders.

-support-FX-option-results

Removed

Compatibility Considerations

If you use scripts that contain the removed or updated options, change your scripts

accordingly.

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Analysis Setup

Changes in MATLAB option object properties
These classes will be removed in a future release.
* polyspace.BugFinderOptions: To customize Polyspace analysis of handwritten

code, use polyspace.Options instead.

* polyspace.ModelLinkBugFinderOptions: To customize Polyspace analysis of
generated code, use polyspace.ModelLinkOptions instead.

The properties and methods of the new classes are almost the same as the original
classes. If optsO1ld is an object of the original class and optsNew is an object of the new
class, the following properties have changed.

Reporting

Removed Use instead
optsOld.Reporting. optsNew.MergedReporting.
EnableReportGeneration EnableReportGeneration

optsOld.Reporting.ReportTemplate |optsNew.MergedReporting.
BugFinderReportTemplate

opts0ld.Reporting. optsNew.MergedReporting.
ReportOutputFormat ReportOutputFormat

ComputingSettings

Removed Use instead
optsOld.ComputingSettings.Batch optsNew.MergedComputingSettings.
BatchBugFinder
optsOld.ComputingSettings. optsNew.MergedComputingSettings.
AddToResultsRepository AddToResultsRepositoryBugFinder

Compatibility Considerations

Replace instances of the old class names in your MATLAB scripts with the new class
names. Then, replace the properties accordingly.

Even if you continue to use the old class names, you must change the properties, as
described above.

4-21

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.bugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.options-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.modellinkoptions-class.html

R2017a

4-22

Change in temporary folder location

In R2017a, Polyspace looks for standard environment variables such as TMPDIR to store
temporary files during an analysis. Previously, Polyspace used the folders /tmp or C:
\Temp during analysis.

You can also store Polyspace temporary files in a folder different from the standard
temporary folders. To learn how Polyspace determines the temporary folder location, see
Storage of Temporary Files.

Compatibility Considerations

If your analysis seems slower than before, check if the new temporary folder is on a
network drive. For faster analysis, use a folder on a local drive instead.

https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/storage-of-temporary-files.html

Analysis Results

Analysis Results

Additional Defect Checkers for Security: Check for security
vulnerabilities such as incorrect use of cryptographic routines

Summary: In R2017a, Polyspace Bug Finder introduces new defect checkers for
preventing security vulnerabilities in your code. The most notable are the cryptography

defect checkers.

Cryptography Defect Checkers

Using Polyspace Bug Finder defects, you can identify incorrect use of the EVP cipher
routines from the OpenSSL library.

The following issues are detected using the cryptography defects.

Initialization Vector

Defect

Issue Detected

Constant block cipher
initialization vector

You used a constant for the initialization vector.

Predictable block
cipher initialization
vector

You used a weak random number generator for the
initialization vector.

Missing block cipher
initialization vector

You forgot to associate a non-null initialization vector with
the cipher context.

Key

Defect

Issue Detected

Constant cipher key

You used a constant for the encryption or decryption key.

Predictable cipher key

You used a weak random number generator for the
encryption or decryption key.

Missing cipher key

You forgot to associate a non-null encryption or decryption
key with the cipher context.

Wrong Order of Operations

4-23

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictableblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictableblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictableblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantcipherkey.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictablecipherkey.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherkey.html

R2017a

4-24

Defect Issue Detected
Inconsistent cipher You perform a decryption on the same context as an
operations encryption and immediately following it, or vice versa.

Missing cipher data to
process

Before performing a final step, you do not perform update
steps for encrypting or decrypting the data.

Missing cipher final
step

You do not perform a final step after update steps for
encrypting or decrypting data.

Algorithms and Modes

Defect

Issue Detected

Weak cipher algorithm

You associated a weak encryption algorithm with the
cipher context.

Weak cipher mode

You associated a weak mode with the cipher context.

Defect Checkers for errno U

sage

Defect

Issue Detected

Errno not checked

You call a function that sets errno to indicate error
conditions, but do not follow the function call with a check
on errno to see if the error occurred.

Errno not reset

You call a function that sets errno but do not reset errno
prior to the call.

Misuse of errno

You check errno for error conditions following calls to
functions that do not necessarily set errno to indicate
error conditions or sets other error indicators.

Defect Checkers for Type Conversions

Defect

Issue Detected

Misuse of sign-
extended character
value

You perform a data type conversion with sign extension
and use the resulting sign-extended character value as
array index or for comparison with EOF.

Character value
absorbed into EOF

You perform a data type conversion that can convert a
character value that is not EOF into EOF, and then

compare the result with EOF.

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/inconsistentcipheroperations.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/inconsistentcipheroperations.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherdatatoprocess.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherdatatoprocess.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherfinalstep.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherfinalstep.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/weakcipheralgorithm.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/weakciphermode.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/errnonotchecked.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/errnonotreset.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseoferrno.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/charactervalueabsorbedintoeof.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/charactervalueabsorbedintoeof.html

Analysis Results

Defect Checkers for Memory Comparisons

Defect

Issue Detected

Memory comparison of
padding data

You use memcmp to compare two structures and in the
process, compare garbage data stored in the structure
padding.

Memory comparison of
strings

You use memcmp to compare two strings and in the
process, compare garbage data stored after the null
terminator.

Other Defect Checkers

Defect

Issue Detected

Misuse of return value
from nonreentrant
standard function

You use the pointer to a static buffer from a nonreentrant
standard function despite a subsequent call to the same
function.

Misuse of readlink()

You pass a buffer size argument to readlink () that does
not leave space for a null terminator in the buffer.

MISRA Amendment Support: Check your code for new security
guidelines in MISRA C:2012 Amendment 1

Summary: In R2017a, you can check for violations of the additional security guidelines
introduced in MISRA C:2012 Amendment 1.

Rule

Description

MISRA
4.14

C:2012 Directive

The validity of values received from external sources shall
be checked.

MISRA C:2012 Rule 12.5

The sizeof operator shall not have an operand which is a
function parameter declared as "array of type".

MISRA C:2012 Rule
21.13

Any value passed to a function in <ctype. h> shall be
representable as an unsigned char or be the value EOF.

MISRA C:2012 Rule
21.14

The Standard Library function memcmp shall not be used
to compare null terminated strings.

4-25

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofpaddingdata.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofpaddingdata.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofstrings.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofstrings.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreadlink.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012directive4.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012directive4.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule12.5.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.13.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.13.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.14.html

R2017a

4-26

Rule Description

MISRA C:2012 Rule The pointer arguments to the Standard Library functions

21.15 memcpy, memmove and memcmp shall be pointers to
qualified or unqualified versions of compatible types.

MISRA C:2012 Rule The pointer arguments to the Standard Library function

21.16 memcmp shall point to either a pointer type, an
essentially signed type, an essentially unsigned type, an
essentially Boolean type or an essentially enum type.

MISRA C:2012 Rule Use of the string handling function from <string.h>

21.17 shall not result in accesses beyond the bounds of the
objects referenced by their pointer parameters.

MISRA C:2012 Rule The size t argument passed to any function in

21.18 <string.h> shall have an appropriate value.

MISRA C:2012 Rule The pointers returned by the Standard Library functions

21.19 localeconv, getenv, setlocale or strerror shall
only be used as if they have pointer to const-qualified
type.

MISRA C:2012 Rule The pointer returned by the Standard Library functions

21.20 asctime, ctime, gmtime, localtime, localecony,
getenv, setlocale or strerror shall not be used
following a subsequent call to the same function.

MISRA C:2012 Rule 22.7 |The macro EOF shall only be compared with the
unmodified return value from any Standard Library
function capable of returning EOF.

MISRA C:2012 Rule 22.8 |The value of errno shall be set to zero prior to a call to an
errno-setting function.

MISRA C:2012 Rule 22.9 |The value of errno shall be tested against zero after
calling an errno-setting function.

MISRA C:2012 Rule The value of errno shall only be tested when the last

22.10 function to be called was an errno-setting function.

New Code Metrics: See number of lines in header files and
number of local variables per function

Summary: In R2017a, Polyspace can provide the following new code complexity metrics:

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.15.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.15.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.16.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.16.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.17.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.17.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.18.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.18.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.19.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.19.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.20.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.20.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.7.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.8.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.9.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.10.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.10.html

Analysis Results

* Number of lines and number of lines without comments in header files
* Number of local non-static va